§ 9.4 - Calculus with Polar Curves

A polar curve $r=f(\theta)$ can be thought of as a parametric curve with
$X=r \cos \theta=f(\theta) \cos \theta\}$ parametric equations
$y=r \sin \theta=f(\theta) \sin \theta\{$ with parameter θ !

Thus, we can use our knowledge of parametric curves to calculate slopes and arc lengths of polar curves!

Derivatives of Polar Curves

The slope of the tangent line to a polar curve $r=f(\theta)$ is

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta} \text { where } \begin{aligned}
& x=f(\theta) \cos \theta \\
& y=f(\theta) \sin \theta
\end{aligned}
$$

Same as $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$ from $\S 9.1$!

Ex: Find the slope of the tangent line to $r=\cos (2 \theta)$ at $\theta=\pi / 4$.

Solution: We have $x=r \cos \theta=\cos (2 \theta) \cos \theta$, hence

$$
\begin{gathered}
y=r \sin \theta=\cos (2 \theta) \sin \theta \\
\text { Slope }=\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{-2 \sin (2 \theta) \cdot \sin \theta+\cos (2 \theta) \cos \theta}{-2 \sin (2 \theta) \cdot \cos \theta-\cos (2 \theta) \sin \theta}
\end{gathered}
$$

At $\theta=\pi / 4$, we get

$$
\begin{aligned}
\text { Slope } & =\frac{-2 \sin (\pi / 2) \sin (\pi / 4)+\cos (\pi / 2) \cos (\pi / 4)}{-2 \sin (\pi / 2) \cos (\pi / 4)-\cos (\pi / 2) \sin (\pi / 4)} \\
& =\frac{-2 \cdot 1 \cdot(\sqrt{2} / 2)+0}{-2 \cdot 1 \cdot(\sqrt{2} / 2)-0} \\
& =1
\end{aligned}
$$

Arc Length of a Polar Curve
The arc length of a polar curve $r=f(\theta)$ for $\theta \in[a, b]$
is given by $\int_{\theta=a}^{\theta=b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta$
(Same as $\int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$ from $\xi 9.1!$)

With $x=f(\theta) \cos \theta$ and $y=f(\theta) \sin \theta$, this becomes...
\searrow product rule!

$$
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=\left[f^{\prime}(\theta) \cos \theta-f(\theta) \sin \theta\right]^{2}+\left[f^{\prime}(\theta) \sin \theta+f(\theta) \cos \theta\right]^{2}
$$

$$
=\left[f^{\prime}(\theta)\right]^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left[f^{\prime}(\theta)\right]^{2} \quad=[f(\theta)]^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=[f(\theta)]^{2}
$$

$$
=\left[f^{\prime}(\theta)\right]^{2}+[f(\theta)]^{2}=r^{2}+\left(\frac{d r}{d \theta}\right)^{2}
$$

Hence, the arc length of a polar curve $r=f(\theta)$ for $\theta \in[a, b]$ is

$$
\int_{\theta=a}^{\theta=b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Ex: Find the length of the cardioid $r=1+\sin \theta$ in the first quadrant of the $x y$-plane.

Solution:

$$
\begin{aligned}
\text { Arc Length } & =\int_{0}^{\pi / 2} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
& =\int_{0}^{\pi / 2} \sqrt{(1+\sin \theta)^{2}+(\cos \theta)^{2}} d \theta \\
& =\int_{0}^{\pi / 2} \sqrt{1+2 \sin \theta+\left(\sin ^{2} \theta+\cos ^{2} \theta\right)} d \theta \\
& =\int_{0}^{\pi / 2} \sqrt{2+2 \sin \theta} \cdot \frac{\sqrt{2-2 \sin \theta}}{\sqrt{2-2 \sin \theta}} d \theta
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \frac{\sqrt{4-4 \sin ^{2} \theta}}{\sqrt{2-2 \sin \theta}} d \theta \\
& =\int_{0}^{\pi / 2} \frac{2 \cos \theta}{\sqrt{2-2 \sin \theta}} d \theta \quad \text { Let } u=2-2 \sin \theta \\
& =\int_{2}^{0} \frac{-1}{\sqrt{u}} d u=-2 \cos \theta d \theta \\
& =\lim _{t \rightarrow 0^{+}} \int_{2}^{t}-u^{-1 / 2} d u \quad \text { at } u=0 \text { ! } \\
& =\lim _{t \rightarrow 0^{+}}-\left[\frac{u^{1 / 2}}{1 / 2}\right]_{2}^{t} \\
& =\lim _{t \rightarrow 0^{+}}-2[\sqrt{t}-\sqrt{2}]=2 \sqrt{2}
\end{aligned}
$$

Area Enclosed by a Polar Curve

In Cartesian coordinates, we compute area as $\int_{x=a}^{x=b} y d x$

Can we do something similar to find the area enclosed by a polar curve $r=f(\theta)$ for $\theta \in[a, b]$?

Well divide the region into Sectors with radius r and and small angle $d \theta$.

$$
\begin{aligned}
\text { Area of sector } & =\pi \cdot \text { radius }^{2} \cdot\left(\frac{\text { angle }}{2 \pi}\right) \\
& =\pi r^{2} \cdot \frac{d \theta}{2 \pi} \\
& =\frac{1}{2} r^{2} d \theta
\end{aligned}
$$

Hence, the area enclosed by $r=f(\theta)$ for $\theta \in[a, b]$ is

$$
\int_{\theta=a}^{\theta=b} \frac{1}{2} r^{2} d \theta
$$

Ex: Calculate the area enclosed by the polar curve $r=1+\sin \theta$ for $\theta \in[0,2 \pi]$.

Solution:

$$
\begin{aligned}
\text { Area } & =\int_{\theta=0}^{\theta=2 \pi} \frac{1}{2} r^{2} d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2}(1+\sin \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(1+2 \sin \theta+\sin ^{2} \theta\right) d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(1+2 \sin \theta+\frac{1}{2}(1-\cos (2 \theta)) d \theta\right. \\
& =\frac{1}{2} \int_{0}^{2 \pi}\left(\frac{3}{2}+2 \sin \theta-\frac{1}{2} \cos (2 \theta)\right) d \theta \\
& =\frac{1}{2}\left[\frac{3}{2} \theta-2 \cos \theta-\frac{1}{2} \cdot \frac{\sin (2 \theta)}{2}\right]_{0}^{2 \pi}=\frac{3 \pi}{2}
\end{aligned}
$$

Ex: Set up - but do not evaluate - an integral that represents the area inside $r=2 \sin \theta$ and outside $r=1$, as shown below.

[Exercise: Sketch these yourself!]

Note: The area between two polar curves for $\theta \in[a, b]$ can be computed as

$$
\int_{\theta=a}^{\theta=b} \frac{1}{2}\left[\left(r_{\text {outer }}\right)^{2}-\left(r_{\text {inner }}\right)^{2}\right] d \theta
$$

Solution: Here, $r_{\text {outer }}=2 \sin \theta$ and $r_{\text {inner }}=1$.

The curves $r=2 \sin \theta$ and $r=1$ intersect when

$$
2 \sin \theta=1 \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

$$
\therefore \text { Area }=\int_{\theta=\pi / 6}^{\theta=5 \pi / 6} \frac{1}{2}\left[(2 \sin \theta)^{2}-(1)^{2}\right] d \theta
$$

