§9.1 (continued) - Calculus with Parametric Curves

Derivatives \& Tangents
The slope of the tangent line to a parametric curve is Calculated as

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

Ex: Consider $x=t^{2}-2 t, y=t+1$. Find the slope of the tangent line when $t=2$.

Solution: We have $\frac{d x}{d t}=2 t-2$ and $\frac{d y}{d t}=1$, hence

$$
\text { slope }=\left.\frac{d y}{d x}\right|_{t=2}=\left.\frac{d y / d t}{d x / d t}\right|_{t=2}=\left.\frac{1}{2 t-2}\right|_{t=2}=\frac{1}{2}
$$

Special Cases:
(i) If $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$ at $t=t_{0}$, the curve has a horizontal tangent line at $t=t_{0}$.
(ii) If $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$ at $t=t_{0}$, the curve has a vertical tangent line at $t=t_{0}$.
(iii) If $\frac{d x}{d t}=0$ and $\frac{d y}{d t}=0$ at $t=t_{0}$, we must examine $\lim _{t \rightarrow t_{0}} \frac{d y / d t}{d x / d t}$ to determine the slope at t_{0}.

Ex: Find all points (x, y) where the tangent line is vertical or horizontal, then sketch the graph.
(a) $x=\sin (\pi t), \quad y=8 t^{3}, \quad t \in[-1,1]$.

Solution: (a) First, $\frac{d x}{d t}=\pi \cos (\pi t), \frac{d y}{d t}=24 t^{2}$

Horizontal tangents?
We need $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$.

$$
\begin{aligned}
\frac{d y}{d t}=24 t^{2}=0 \Rightarrow & t=0 \\
& \left(\text { and } \frac{d x}{d t}=\pi \cos (\pi t) \neq 0 \text { here! }\right)
\end{aligned}
$$

Vertical tangents?
We need $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.

$$
\begin{aligned}
\frac{d x}{d t}=\pi \cos (\pi t)=0 \Rightarrow & t= \pm \frac{1}{2} \\
& \left(\text { and } \frac{d y}{d t}=24 t^{2} \neq 0\right. \text { here!) }
\end{aligned}
$$

Summary:

t	0	$1 / 2$	$-1 / 2$
$(x(t), y(t))$	$\underbrace{(0,0)}_{$ Horizontal Tangent $} \underbrace{(1,1) \quad(-1,-1)}_{$ Vertical Tangents $}$		

To sketch the graph, let's plot the starting point $(x(-1), y(-1))=(0,-8)$, the ending point $(x(1), y(1))=(0,8)$, as well as the above points and their tangent lines.

(b) $x=\cos (t), \quad y=\sin (2 t), \quad t \in[0,2 \pi]$.

Solution: We have $\frac{d x}{d t}=-\sin (t)$ and $\frac{d y}{d t}=2 \cos (2 t)$.

Horizontal tangents? Need $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d t}=2 \cos (2 t)=0 \\
& \Rightarrow 2 t= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots \\
& \Rightarrow t= \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4}, \pm \frac{5 \pi}{4}, \cdots \quad \text { Also } \frac{d x}{d t}=-\sin (t) \neq 0 \text { here! } \\
& \Rightarrow t=\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4 \quad \text { Since } t \in[0,2 \pi] \quad
\end{aligned}
$$

Vertical tangents? Need $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$.

$$
\begin{aligned}
& \Rightarrow-\sin (t)=0 \\
& \Rightarrow t=0, \pi, 2 \pi \quad \text { Also } \frac{d y}{d t}=2 \cos (2 t) \neq 0 \text { here! }
\end{aligned}
$$

Summary:

t	$\pi / 4$	$3 \pi / 4$	$5 \pi / 4$	$7 \pi / 4$	$0,2 \pi$	π
$(x(t), y(t))$	$\underbrace{$$(\sqrt{2} / 2,1)$ $(-\sqrt{2} / 2,-1)$ $(-\sqrt{2} / 2,1)$ $(\sqrt{2} / 2,-1)$}$_{\text {Horizontal tangents }} \underbrace{(1,0)}_{\text {Vertical tangents }}(-1,0)$					

We plot these points below and sketch the graph:

Area Enclosed by a Parametric Curve

Q: What is the total area enclosed by the parametric curve $x=\cos (t), y=\sin (2 t), t \in[0,2 \pi]$ from the previous example?

A: Due to symmetry,

Total Area $=4 \cdot($ Shaded Area $)$

$$
\begin{aligned}
& \int_{x=1}^{\rightarrow} x=\cos t=1 \Rightarrow t=0
\end{aligned}
$$

$$
\begin{aligned}
& =4 \int_{t=\pi / 2}^{t=0} \underbrace{\sin (2 t)}_{=2 \sin t \cos t} \cdot(-\sin t) d t \\
& =-4 \int_{t=\pi / 2}^{t=0} 2 \sin ^{2} t \cdot \cos t d t \quad \text { Let } u=\sin t, d u=\cos t d t \\
& =-8 \int_{u=1}^{u=0} u^{2} d u \\
& =-8\left[\frac{u^{3}}{3}\right]_{1}^{0}=\frac{8}{3}
\end{aligned}
$$

Ex: Calculate the area enclosed by the parametric curve

$$
x=\cos t, \quad y=\sin t, \quad t \in[0,2 \pi] .
$$

Solution: This equation describes the unit circle!

$$
\begin{aligned}
\text { Total Area } & =2 \cdot(\text { Shaded Area }) \\
& =2 \int_{x=-1}^{x=1} \begin{array}{r}
t x=\cos t \\
d x=-\sin t d t
\end{array} \\
& =2 \int_{t=\pi}^{t=0} \sin t \cdot(-\sin t) d t
\end{aligned}
$$

$$
\begin{aligned}
& =-2 \int_{t=\pi}^{t=0} \underbrace{\sin ^{2} t}_{=\frac{1}{2}(1-\cos 2 t)} d t \\
& =-\int_{t=\pi}^{t=0}(1-\cos 2 t) d t=[\sin 2 t-t]_{\pi}^{0}=\pi
\end{aligned}
$$

Arc Length of a Parametric Curve

Q: Given $x=x(t), y=y(t)$,
what is the length of the
 curve from $t=a$ to $t=b$?

Idea: Let's chop up the curve into smaller pieces and approximate the length of each piece! $S_{i}=$ tiny are length

$$
\text { Arc length }=\sum_{i=1}^{n} s_{i}
$$

$$
\begin{aligned}
& \approx \sum_{i=1}^{n} \sqrt{\Delta x_{i}^{2}+\Delta y_{i}^{2}} \\
& =\sum_{i=1}^{n} \sqrt{\left(\frac{\Delta x_{i}}{\Delta t}\right)^{2}+\left(\frac{\Delta y_{i}}{\Delta t}\right)^{2}} \Delta t
\end{aligned}
$$

Taking a limit as $n \longrightarrow \infty$, we obtain the following:

The arc length of a parametric curve

$$
x=x(t), y=y(t), \quad t \in[a, b]
$$

is equal to

$$
\int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Ex: Calculate the arc length for each curve below:
(a) $\quad x=\cos t, \quad y=\sin t, \quad t \in[0,2 \pi]$

Solution: This equation describes the unit circle!

We have $\frac{d x}{d t}=-\sin t, \frac{d y}{d t}=\cos t$, and hence

$$
\begin{aligned}
\text { Arc length } & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{\underbrace{(-\sin t)^{2}+(\cos t)^{2}}_{=1}} d t=\int_{0}^{2 \pi} 1 d t=2 \pi
\end{aligned}
$$

(b) $x=\frac{t^{2}}{2}, \quad y=\frac{(2 t+1)^{3 / 2}}{3}, t \in[0,1]$

Solution: $\quad \frac{d x}{d t}=t, \frac{d y}{d t}=\frac{3 / 2(2 t+1)^{1 / 2} \cdot 2}{3}=\sqrt{2 t+1}$, hence

$$
\begin{aligned}
\text { Arc length } & =\int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{1} \sqrt{t^{2}+(\sqrt{2 t+1})^{2}} d t \\
& =\int_{0}^{1} \sqrt{t^{2}+2 t+1} d t \\
& =\int_{0}^{1} \sqrt{(t+1)^{2}} d t=\int_{0}^{1}(t+1) d t=\left[\frac{t^{2}}{2}+t\right]_{0}^{1}=\frac{3}{2}
\end{aligned}
$$

