§ 10.6, 10.7 -Applications
Well explore 3 applications of Taylor series!
(1.) We can find exact sums of certain infinite Series using Taylor series!

Ex: From an earlier example, we know

$$
\ln |1+x|=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \quad \text { for } x \in(-1,1] \text {. }
$$

Plugging in $x=1$, we get

$$
\ln (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots
$$

Wive just found the sum of the alternating harmonic series!

Ex: We saw earlier that

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \text { for } x \in[-1,1]
$$

Plugging in $x=1$, we get

$$
\begin{array}{rlrl}
& & \arctan (1) & =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \\
\Rightarrow & \frac{\pi}{4} & =1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots \\
\Rightarrow & & \pi & =4-\frac{4}{3}+\frac{4}{5}-\frac{4}{7}+\cdots
\end{array}
$$

(Okay, that's pretty cool!)

Ex: Find the sum of each series below.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \quad$ (This converges by the AST... but to what?)

Solution: $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$ looks like $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, which
we know converges for $x \in(-\infty, \infty)$. Specifically,

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\left.\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right|_{x=-1}=e^{-1}
$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{9^{n}(2 n)!}$

Solution: This looks like $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$,
which converges for $x \in(-\infty, \infty)$. Specifically,

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{9^{n}(2 n)!} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}(\pi / 3)^{2 n}}{(2 n)!} \\
& =\cos (\pi / 3) \\
& =1 / 2
\end{aligned}
$$

(c) $\sum_{n=0}^{\infty} \frac{n}{5^{n}}$

Solution: This looks like $\sum_{n=1}^{\infty} n x^{n}$ where $x=\frac{1}{5}$.
What function is this equal to??
Note that $\sum_{n=1}^{\infty} n x^{n}=x\left[\sum_{n=1}^{\infty} n x^{n-1}\right]$

$$
\begin{aligned}
& =x\left[\sum_{n=0}^{\infty} x^{n}\right]^{\prime} \\
& =x\left[\frac{1}{1-x}\right]^{\prime}=\frac{x}{(1-x)^{2}},
\end{aligned}
$$

and since $\sum_{n=0}^{\infty} x^{n}$ has radius of convergence $R=1$, so too does $\sum_{n=1}^{\infty} n x^{n}$ (hence will converge when $x=\frac{1}{5}$).

Thus,

$$
\sum_{n=1}^{\infty} \frac{n}{5^{n}}=\left.\sum_{n=1}^{\infty} n x^{n}\right|_{x=\frac{1}{5}}=\left.\frac{x}{(1-x)^{2}}\right|_{x=\frac{1}{5}}=\frac{5}{16}
$$

(d) $\sum_{n=2}^{\infty} \frac{(-1)^{n} n(n-1)}{4^{n}}$

Solution: This looks like $\sum_{n=2}^{\infty} n(n-1) x^{n}$ where $x=\frac{-1}{4}$.
Note that

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) x^{n} & =x^{2} \sum_{n=2}^{\infty} n(n-1) x^{n-2} \\
& =x^{2}\left[\sum_{n=0}^{\infty} x^{n}\right]^{\prime \prime} \\
& =x^{2}\left[\frac{1}{1-x}\right]^{\prime \prime}=\frac{2 x^{2}}{(1-x)^{3}}
\end{aligned}
$$

Thus, $\quad \sum_{n=2}^{\infty} \frac{(-1)^{n} n(n-1)}{4^{n}}=\left.\sum_{n=2}^{\infty} n(n-1) x^{n}\right|_{x=-\frac{1}{4}}$

$$
\begin{aligned}
& =\left.\frac{2 x^{2}}{(1-x)^{3}}\right|_{x=-\frac{1}{4}} \\
& =\frac{2(-1 / 4)^{2}}{(1+1 / 4)^{3}}=\frac{8}{125}
\end{aligned}
$$

(2.) We can use Taylor series to calculate indeterminate limits without L'Hopital's Rule!

Ex: Use Taylor series to evaluate the following limits (and NOT L'Hopital's rule).
(a) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$

Replace e^{x} with Maclaurin Series!

Solution:

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{\left[x+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right]-1}{x}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots}{x} \\
& =\lim _{x \rightarrow 0}\left(1+\frac{x}{2!}+\frac{x^{2}}{3!}+\cdots\right) \\
& =1+0+0+\cdots \\
& =1
\end{aligned}
$$

(b) $\lim _{x \rightarrow 0} \frac{x^{3}}{\sin (x)-x}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{3}}{\sin (x)-x} & =\lim _{x \rightarrow 0} \frac{x^{3}}{\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots\right)-x} \\
& =\lim _{x \rightarrow 0} \frac{x^{3}}{-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots} \div x^{3} \\
& =\lim _{x \rightarrow 0} \frac{1}{-\frac{1}{3!}+\frac{x^{2}}{5!}-\cdots} \\
& =\frac{1}{-\frac{1}{6}+0-0+\cdots} \\
& =-6
\end{aligned}
$$

(c) $\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{e^{x}-x-1}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{e^{x}-x-1} & =\lim _{x \rightarrow 0} \frac{x-\left(x-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\frac{(2 x)^{6}}{6!}+\cdots\right)}{\left(x+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right)-x-1} \\
& =\lim _{x \rightarrow 0} \frac{\frac{2^{2} x^{2}}{2!}-\frac{2^{4} x^{4}}{4!}+\frac{2^{6} x^{6}}{6!}-\cdots}{\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots} \div x^{2} \\
& =\lim _{x \rightarrow 0} \frac{\frac{2^{2}}{2!}-\frac{2^{4} x^{2}}{4!}+\frac{2^{6} x^{4}}{6!}-\cdots}{\frac{1}{2!}+\frac{x}{3!}+\frac{x^{2}}{4!}+\cdots} \\
& =\frac{\frac{2^{2}}{2!}-0+0-\cdots}{\frac{1}{2!}+0+0+\cdots} \\
& =\frac{\frac{4}{2}}{\frac{1}{2}}=4
\end{aligned}
$$

(3.) We can use Taylor series to evaluate impossible integrals (as series)!

Ex: (a) Use Maclaurin series to evaluate $\int e^{-x^{2}} d x$ as a series.

Note: $\int e^{-x^{2}} d x$ is impossible to evaluate using our earlier integration methods, as $e^{-x^{2}}$ doesn't have an antiderivative in terms of our usual functions.

Solution: $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, hence we have

$$
\begin{aligned}
& \Rightarrow e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!} \\
& \Rightarrow \int e^{-x^{2}} d x=\int \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}+C
\end{aligned}
$$

(b) Express $\int_{0}^{1} e^{-x^{2}} d x$ as a series and approximate its value with error at most $\frac{1}{100}$.

Solution:

$$
\begin{aligned}
\int_{0}^{1} e^{-x^{2}} d x & =\left[\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{n!(2 n+1)}\right]_{0}^{1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(2 n+1)} \quad \begin{array}{l}
\text { converges by AST } \\
\text { since } b_{n}=\frac{1}{n!(2 n+1)} \\
\text { decreases to } 0 .
\end{array} \\
& =\underbrace{\frac{1}{0!\cdot 1}-\frac{1}{1!\cdot 3}+\frac{1}{2!\cdot 5}-\frac{1}{3!\cdot 7}-\underbrace{\frac{1}{4!\cdot 9}}+\cdots}_{S_{3}}
\end{aligned}
$$

Thus, by the Alternating Series Estimation Theorem,

$$
\int_{0}^{1} e^{-x^{2}} d x \approx S_{3}=\frac{26}{35} \approx 0.74286
$$

with |erro rel $\leq b_{n+1}=\frac{1}{4!\cdot 9}<\frac{1}{100}$.

