Absolute vs. Conditional Convergence

Some series NEED a mix of positive and negative terms in order to converge...

e.g.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converges by the AST, but
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$
 (the harmonic series) diverges.

... while others may converge even if all terms have the same sign.

e.g.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$
 converges by the AST, and also
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n^2} \right| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges by the p-series test.

It will be important to distinguish between these types of convergence.

<u>Definition</u>: A series $\sum a_n$ is said to

- (i) converge absolutely if \[|a_n| \] converges.
- (ii) converge conditionally if \sum an converges but $\sum |a_n|$ diverges.

Using our new terminology, we can say that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} \quad \text{converges absolutely, while } \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \quad \text{converges conditionally.}$

The following result shows that absolute convergence is even stronger than regular convergence.

Theorem: If \leq |an| converges, then \leq an converges as well. That is, any absolutely convergent series is convergent.

Proof: Suppose that $\mathbb{Z}|a_n|$ converges, hence so too does $\mathbb{Z}|a_n|$. We note that Add $|a_n|$ $\left\{\begin{array}{c} -|a_n| \leq a_n \leq |a_n| \\ \text{to all sides} \end{array}\right\}$ $0 \leq a_n + |a_n| \leq 2|a_n|$ terms of a convergent series.

So $\sum (an+|an|)$ converges by the comparison test. Thus, since $\sum a_n = \sum (a_n+|a_n|) - \sum |a_n|$, convergent convergent

∑an must converge too!

This is useful because sometimes it's easier to show that a series converges absolutely!

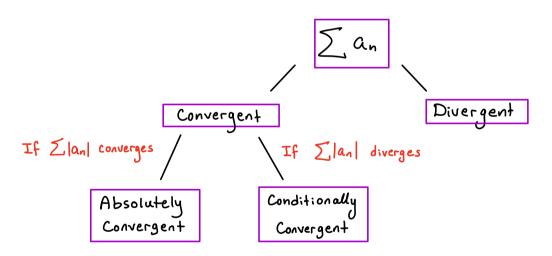
 $Ex: Does \sum_{n=1}^{\infty} \frac{\sin(n^3)}{n^3}$ converge or diverge?

Can't use integral test, comparison test, or LCT because $\frac{\sin(n^3)}{n^3}$ is sometimes negative!

Solution: Let's check absolute convergence!

For
$$\sum_{n=1}^{\infty} \left| \frac{\sin(n^3)}{n^3} \right|$$
, we know $0 \le \left| \frac{\sin(n^3)}{n^3} \right| \le \frac{1}{n^3}$ positive terms \Rightarrow integral, comparison, LCT unlocked! and $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a convergent p-series $(p=3>1)$, so $\sum_{n=1}^{\infty} \left| \frac{\sin(n^3)}{n^3} \right|$ converges by the comparison test. Thus, $\sum_{n=1}^{\infty} \frac{\sin(n^3)}{n^3}$ converges absolutely, hence $\frac{\cos(n^3)}{\sin(n^3)}$ converges absolutely, hence $\frac{\cos(n^3)}{\sin(n^3)}$.

The following chart summarizes all convergence possibilities:



Ex: Determine whether each series below converges absolutely, converges conditionally or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^2+1}}$$

Solution: First note that
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$$
 converges by

the AST, as the terms
$$bn = \frac{1}{\sqrt{n^2+1}}$$
 are decreasing

and
$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{\sqrt{n^2+1}} = 0$$
.

To determine if the series converges absolutely, we look at

$$\sum_{n=1}^{\infty} \left| \frac{\left(-1\right)^n}{\sqrt{n^2+1}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

Using the LCT with
$$a_n = \frac{1}{\sqrt{n^2+1}}$$
 and $b_n = \frac{1}{\sqrt{n^2}} = \frac{1}{n}$,

we have ...

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(\frac{1}{\sqrt{n^2+1}}\right)}{\left(\frac{1}{n}\right)}$$
$$= \lim_{n \to \infty} \frac{n}{\sqrt{n^2+1}}$$

$$= \lim_{N \to \infty} \frac{N}{\sqrt{1 + \frac{1}{N^2}}}$$

$$= \frac{1}{\sqrt{1 + 0}} = 1 \in (0, \infty)$$

By the LCT, Since
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges (it's the

harmonic series),
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$
 must also diverge.

Thus,
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$$
 does not converge absolutely.

Conclusion:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$$
 Converges conditionally.

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{1+2^n}$$

Solution: The series is alternating, hence the AST may be tempting. Unfortunately, the terms $b_n = \frac{3^n}{1+2^n}$

don't tend to O as $n \rightarrow \infty$. Indeed,

$$\lim_{n \to \infty} \frac{3^n}{1+2^n} = \lim_{n \to \infty} \frac{3^n}{2^n} \left(\frac{1}{\frac{1}{2^n} + 1} \right)$$

$$= \lim_{n \to \infty} \frac{\left(\frac{3}{2}\right)^n \cdot \left(\frac{1}{\frac{1}{2^n} + 1}\right)}{\frac{1}{2^n} + 1} = \infty$$

So the AST doesn't apply ... but we can instead use

the divergence test:
$$\lim_{n\to\infty} (-1)^n \cdot \frac{3^n}{1+2^n}$$
 DNE, hence oscillates $\to \infty$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{3^n}{1+2^n} \quad \underline{\text{diverges}}.$$