§ 7.4 - Work

Suppose a constant force F is applied to an object, moving it from $x=a$ to $x=b$.

In this case, the work done on the object is
Work $=$ Force \cdot Distance $=F \cdot(b-a)$

What if the force is not constant, and instead changes throughout the process (so force $=F(x)$)?

For example, if the container above were leaking...

... then it would get lighter as x increases, meaning less and less force would be needed to move it!

If force $=F(x)$, then the work done in moving the object a small distance $\Delta X \approx d x$ is roughly $F(x) \Delta x$. Adding these work amounts from $x=a$ to $x=b$, we get

$$
\text { Work }=\int_{a}^{b} F(x) d x
$$

Ex: A 10 m chain of mass 40 kg hangs from the top of a building. How much work is done in lifting the chain to the top?

Solution: First, let's figure out how much mass is being moved at each point of the process.

The chain has density $\frac{40 \mathrm{~kg}}{10 \mathrm{~m}}=4 \mathrm{~kg} / \mathrm{m}$ so once x metres have been lifted (and 10-x metres remain), the remaining chain has mass

$$
4 \frac{\mathrm{~kg}}{\mathrm{~m}} \cdot(10-x) \mathrm{m}=40-4 x \mathrm{~kg}
$$

Hence, Due to gravity

$$
\begin{aligned}
\text { Force } & =\text { Mass } \cdot \text { Acceleration }=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\Rightarrow F(x) & =(40-4 x) \cdot 9.81 \mathrm{~N} \text { (Newtons) }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\text { Work }=\int_{0}^{10} F(x) d x & =\int_{0}^{10}(40-4 x) \cdot 9.81 d x \\
& =9.81\left[40 x-2 x^{2}\right]_{0}^{10} \\
& =9.81(400-2 \cdot 100) \\
& =1962 \mathrm{~J} \text { (joules) }
\end{aligned}
$$

Ex: Rapunzel's hair has a constant density of $3 \mathrm{~kg} / \mathrm{m}$ and hangs to the bottom of her 100 m tower. Set up the integrals that give each of the following.
(a) The work done in lifting the hair to the top of the tower.

Solution: Once x metres have been lifted (and 100-x metres remain), we have

$$
m_{\text {hair }}=3 \frac{\mathrm{~kg}}{\mathrm{~m}} \cdot(100-x) \mathrm{m}=300-3 x \mathrm{~kg} \text {. }
$$

Hence,

$$
\begin{aligned}
\text { Force }= & \text { Mass } \cdot \text { Acceleration } \\
\Rightarrow F(x) & =(300-3 x) \cdot 9.81 \mathrm{~N}
\end{aligned}
$$

Thus,

$$
\text { Work }=\int_{0}^{100} F(x) d x=\int_{0}^{100}(300-3 x) \cdot 9.81 d x
$$

(b) The work done in lifting the hair the first half of the way up.

Solution: We need only modify the bounds from (a).

$$
\text { Work }=\int_{0}^{50} F(x) d x=\int_{0}^{50}(300-3 x) \cdot 9.81 d x
$$

(c) The work done in lifting the hair to the top, given that her 10 kg "Skipthe Dishes" order is tied to the end.

Solution: Once x metres of hair have been lifted,

$$
m_{\text {hair }}=300-3 \times \mathrm{kg}, \quad m_{\text {food }}=10 \mathrm{~kg} \text { (constant) }
$$

Thus,

$$
\begin{aligned}
& \text { Force }=\text { Mass } \cdot \text { Acceleration } \\
& \Rightarrow F(x)=[(300-3 x)+10] \cdot 9.81 \mathrm{~N} \\
& \overbrace{m_{\text {hair }}} \overbrace{m_{\text {food }}}
\end{aligned}
$$

Hence, we get

$$
\text { Work }=\int_{0}^{100} F(x) d x=\int_{0}^{100}(310-3 x) \cdot 9.81 d x
$$

(d) Same as (c), but the "Skip the Dishes" order falls off after being lifted 10 m .

Solution: In the first 10 m , we have

In the last 90 m , we have

$$
\text { Work }=\int_{10}^{100}(300-3 x) \cdot 9.81 d x
$$

Hence, the total work is

$$
\int_{0}^{10}(310-3 x) \cdot 9.81 d x+\int_{10}^{100}(300-3 x) \cdot 9.81 d x
$$

Ex: A 50 m rope of density $2 \mathrm{~kg} / \mathrm{m}$ hangs into a well.

The rope is attatched to a 10 kg bucket initially filled with 6 kg of water. If water leaks from the bucket at a constant rate and only 1 kg of water remains when the bucket reaches the top of the well, determine the work needed to lift the bucket to the top.

Assume acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$.

Solution: Over the 50 m of distance, $6-1=5 \mathrm{~kg}$ of water are lost, so the water is leaking at a rate of $\frac{5 \mathrm{~kg}}{50 \mathrm{~m}}=\frac{1}{10} \frac{\mathrm{~kg}}{\mathrm{~m}}$. Thus, once x metres of rope have been lifted and $(50-x)$ metres remain, we have

$$
\begin{aligned}
& m_{\text {rope }}=2 \frac{\mathrm{~kg}}{\mathrm{~m}} \cdot(50-x) m=100-2 x \mathrm{~kg}, \\
& m_{\text {bucket }}=10 \mathrm{~kg} \text { (constant), } \\
& m_{\text {water }}=6 \mathrm{~kg}-\frac{1}{10} \frac{\mathrm{~kg}}{\mathrm{~m}} \cdot x \mathrm{~m}=6-\frac{x}{10} \mathrm{~kg}
\end{aligned}
$$

Thus, we obtain

Force $=$ Mass \cdot Acceleration

$$
\begin{aligned}
\Rightarrow \quad F(x) & =\left[(100-2 x)+10+\left(6-\frac{x}{10}\right)\right] \cdot 10 \\
& =1160-21 x \mathrm{~N}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\text { Work } & =\int_{0}^{50} F(x) d x \\
& =\int_{0}^{50}(1160-21 x) d x \\
& =\left[1160 x-\frac{21 x^{2}}{2}\right]_{0}^{50}=31750 \mathrm{~J}
\end{aligned}
$$

