§ 3.9 - Derivatives of Trig Functions
To find the derivative of $f(x)=\sin (x)$, well need two very special limits!

See below why these are true!

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=0
$$

Let's start with $\lim _{x \rightarrow 0} \frac{\sin x}{x}$!

From the diagram, we see that

$$
\sin x \leqslant x \leqslant \tan x, \quad x \in(0, \pi / 2)
$$

Allowing for negative x, we have $|\sin x| \leq|x| \leq|\tan x|, \quad x \in\left(-\frac{\pi}{2} \cdot \frac{\pi}{2}\right)$

$$
\begin{aligned}
& \Rightarrow 1 \leq \frac{x}{|\sin x|} \leq \frac{|\tan x|}{|\sin x|} \quad \text { (dividing by }|\sin x| \text {) } \\
& \Rightarrow 1 \geqslant \left\lvert\, \frac{\sin x\left|\geqslant\left|\frac{\sin x}{x}\right|\right.}{} \quad\right. \text { (taking reciprocals) }
\end{aligned}
$$

[Can remove absolute values, as $\frac{\sin x}{x}>0 \& \cos x>0$ as $x \longrightarrow 0$.]

$$
\begin{aligned}
& \Rightarrow \cos x \leq \frac{\sin x}{x} \leq 1 \\
& \Rightarrow \underbrace{\lim _{x \rightarrow 0} \cos x}_{=1} \leq \lim _{x \rightarrow 0} \frac{\sin x}{x} \leq \underbrace{\lim _{x \rightarrow 0} 1}_{=1}
\end{aligned}
$$

By the squeeze theorem, $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

What about $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}$?

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos x-1}{x} \cdot \frac{\cos x+1}{\cos x+1} & =\lim _{x \rightarrow 0} \frac{\cos ^{2} x-1}{x(\cos x+1)} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x(\cos x+1)} \\
& =\lim _{x \rightarrow 0} \underbrace{\frac{\sin x}{x}}_{\rightarrow 1} \cdot \underbrace{\frac{\sin x}{\cos x+1}}_{\rightarrow 0 / 2=0 .} \\
& =1.0=0 .
\end{aligned}
$$

We may now calculate f^{\prime} for $f(x)=\sin (x)$!

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{\frac{\sin (x+h)-\sin (x)}{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x)[\cos (h)-1]+\cos (x) \cdot \sin (h)}{h} \\
& =\lim _{h \rightarrow 0} \sin (x) \cdot\left[\frac{\cos (h)-1}{h}\right]+\cos (x) \frac{\sin (h)^{1}}{h}=\cos (x)
\end{aligned}
$$

Therefore,

$$
(\sin x)^{\prime}=\cos x
$$

Similarly,

$$
(\cos x)^{\prime}=-\sin x
$$

We can now find the derivatives of $\tan x, \sec x$, cote and $\csc x$ using derivative rules!

Ex: Find $(\tan x)^{\prime}$ and $(\sec x)^{\prime}$.

Solution: Quotient rule!

$$
\begin{aligned}
(\tan x)^{\prime}=\left(\frac{\sin x}{\cos x}\right)^{\prime} & =\frac{\cos x \cdot \overbrace{(\sin x)^{\prime}}^{\cos x}-\sin x \cdot \overbrace{(\cos x)^{\prime}}^{-\sin x}}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x \\
(\sec x)^{\prime}=\left(\frac{1}{\cos x}\right)^{\prime} & =\frac{\cos x \cdot 1^{\prime}-1 \cdot \overbrace{(\cos x)^{\prime}}^{-\sin x}}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x}=\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}=\sec x \cdot \tan x
\end{aligned}
$$

Summary:

$$
\begin{array}{ll}
(\sin x)^{\prime}=\cos x & (\cos x)^{\prime}=-\sin x \\
(\tan x)^{\prime}=\sec ^{2} x & (\sec x)^{\prime}=\sec x \cdot \tan x \\
(\cot x)^{\prime}=-\csc ^{2} x & (\csc x)^{\prime}=-\csc x \cdot \cot x
\end{array}
$$

Exercises!

Ex: Find the derivative of each function below.
(a) $y=\sec (1+3 x)$
(b) $y=\sin ^{2}(6 x)$

Solution:
(a)

$$
\begin{aligned}
y^{\prime} & =\sec (1+3 x) \tan (1+3 x) \cdot(1+3 x)^{\prime} \quad \text { (chain rule) } \\
& =\sec (1+3 x) \tan (1+3 x) \cdot 3
\end{aligned}
$$

(b)

$$
\begin{aligned}
y^{\prime} & =2 \sin (6 x) \cdot[\sin (6 x)]^{\prime} \quad(\text { chain rule }) \\
& =2 \sin (6 x) \cdot \cos (6 x) \cdot(6 x)^{\prime} \quad \text { (chain rule ... again!) } \\
& =2 \sin (6 x) \cos (6 x) \cdot 6
\end{aligned}
$$

