§1.7 -Trigonometry Review

In Calculus, angles are measured in radians.
A circle has 2π radians. A sector of a circle with radius r and central angle of θ radians has an arc length of

$$
a=\theta \cdot r
$$

To convert between degrees and radians, we use the formulas

$$
\begin{aligned}
& \text { degrees }=\left(\frac{180}{\pi}\right) \cdot \text { radians } \\
& \text { radians }=\left(\frac{\pi}{180}\right) \cdot \text { degrees }
\end{aligned}
$$

Ex: 120° in radians is $120 \cdot\left(\frac{\pi}{180}\right)=\frac{2 \pi}{3}$

In the $x y$-plane, we usually measure angles counterclockwise from the positive x-axis.

Angles measured clockwise are considered negative.

Trigonometric Functions

Given a right triangle as below we define

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \cos \theta=\frac{x}{r} \\
& \tan \theta=\frac{y}{x}=\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

We also define $\csc \theta=\frac{r}{y}=\frac{1}{\sin \theta}$

$$
\begin{aligned}
& \sec \theta=\frac{r}{x}=\frac{1}{\cos \theta} \\
& \cot \theta=\frac{x}{y}=\frac{\cos \theta}{\sin \theta} .
\end{aligned}
$$

From these definitions of $\sin \theta$ and $\cos \theta$, we see that any point on the unit circle below has coordinates $x=\frac{x}{1}=\cos \theta$ and $y=\frac{y}{1}=\sin \theta$.

By the Pythagorean theorem, $x^{2}+y^{2}=1^{2}$, hence

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

From this we also get

$$
\begin{aligned}
& \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \Rightarrow \tan ^{2} \theta+1=\sec ^{2} \theta \\
& \frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \Rightarrow 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

You should memorize the value of $(\cos \theta, \sin \theta)$
for each "special angle" on the unit circle below.

We can use the values of $\cos \theta$ and $\sin \theta$ to compute the values of the other trig functions!

$$
\text { Ex: } \quad \begin{aligned}
\tan \left(\frac{2 \pi}{3}\right) & =\frac{\sin \left(\frac{2 \pi}{3}\right)}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{\sqrt{3} / 2}{-1 / 2}=-\sqrt{3} \\
\sec \left(\frac{2 \pi}{3}\right) & =\frac{1}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{1}{(-1 / 2)}=-2
\end{aligned}
$$

Graphs of Trig Functions

Observations:

- For all $x,-1 \leq \sin x \leq 1,-1 \leq \cos x \leq 1$
- $\sin (x)$ is odd : $\sin (-x)=-\sin (x)$
- $\cos (x)$ is even: $\cos (-x)=\cos (x)$
- Both functions are periodic with period 2π :

$$
\sin (x+2 \pi)=\sin (x), \cos (x+2 \pi)=\cos (x)
$$

- $\cos (x)$ is a shift of $\sin (x)$ and vice versa:

$$
\cos (x)=\sin (x+\pi / 2), \sin (x)=\cos (x-\pi / 2)
$$

We also have:

Other Useful Identities

Sum / Difference Identities

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& \sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
& \cos (\alpha-\beta)=\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta)
\end{aligned}
$$

Double Angle Identities

$$
\begin{aligned}
& \sin (2 \theta)=2 \sin \theta \cos \theta, \\
& \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
& =1-2 \sin ^{2} \theta
\end{aligned}
$$

We can use the above identities to prove new identities!

Ex: Prove that for all θ,

$$
2 \sin ^{3} \theta=2 \sin \theta-\sin 2 \theta \cos \theta .
$$

T Tip: start with more complicated side!
Solution: Starting with the RHS, we have

$$
\begin{aligned}
2 \sin \theta-\sin 2 \theta \cos \theta & =2 \sin \theta-(2 \sin \theta \cos \theta) \cos \theta \\
& =2 \sin \theta\left[1-\cos ^{2} \theta\right] \\
& =2 \sin \theta\left[\sin ^{2} \theta\right] \\
& =2 \sin ^{3} \theta,
\end{aligned}
$$

which we recognize as the LHS, hence LHS $=$ RUS .

Identities are also useful when solving trig equations.

Ex: Find all $\theta \in[0,2 \pi]$ that solve the equation.
(a) $\cos \theta=\sin 2 \theta$

Solution:

$$
\begin{aligned}
& \qquad \begin{aligned}
\cos \theta=\sin 2 \theta & \Longrightarrow \cos \theta=2 \sin \theta \cos \theta \\
& \Longrightarrow \cos \theta(1-2 \sin \theta)=0 \\
& \Longrightarrow \cos \theta=0 \text { or } 1-2 \sin \theta=0 \\
& (\Rightarrow \sin \theta=1 / 2)
\end{aligned} \\
& \text { From the } \quad
\end{aligned}
$$

unit circle

$$
\rightarrow \theta=\pi / 2,3 \pi / 2, \pi / 6,5 \pi / 6
$$

(b) $\sin ^{2} \theta+\cos \theta+1=0$

Solution: Rewrite in terms of $\cos \theta$!

$$
\begin{array}{ll}
\sin ^{2} \theta+\cos \theta+1=0 & \Rightarrow\left(1-\cos ^{2} \theta\right)+\cos \theta+1=0 \\
& \Rightarrow-\cos ^{2} \theta+\cos \theta+2=0
\end{array}
$$

$$
x^{2}-x-2=(x-2)(x+1) \quad \Rightarrow \quad \cos ^{2} \theta-\cos \theta-2=0
$$

where $x=\cos \theta$.

$$
\begin{array}{ll}
\Rightarrow & (\cos \theta-2)(\cos \theta+1)
\end{array}=00 子 \begin{array}{ll}
\Rightarrow & \cos \theta=2 \\
& \text { or } \cos \theta=-1 \\
& (\theta=\pi)
\end{array}
$$

$$
\therefore \theta=\pi
$$

