\$ 4.9 - Related Rates

Idea: Suppose x and y change according to time, t. If x and y are related and we know $d x / d t$ (i.e, how quickly x is changing), then we can figure out $d y / d t$.

Ex: A person is walking away from a street light at a rate of $4 \mathrm{~m} / \mathrm{s}$. If the person is 2 m tall and the street light is 6 m tall, how quickly is the length of the person's shadow changing?

Solution: Start with a picture!

Let $x=$ man's distance from the street light at time t
$s=$ length of the shadow at time t.

These quantities are related by similar triangles!

$$
\frac{6}{2}=\frac{x+s}{s} \Rightarrow 3 s=x+s \Rightarrow s=x / 2
$$

We know $\frac{d x}{d t}=4$ and want to find $\frac{d s}{d t}$. Let's differentiate with respect to time.

$$
s=\frac{x}{2} \Rightarrow \frac{d s}{d t}=\frac{1}{2} \frac{d x}{d t}=\frac{1}{2}(4)=2
$$

\therefore The shadow is growing at a rate of $2 \mathrm{~m} / \mathrm{s}$.

The Process
(1) Draw a picture and define your variables.
(2) Find a formula relating your variables.
(3) Differentiate (implicitly) with respect to t
(4) Solve for the desired quantity.

Ex: A steel cylinder is smooshed in a hydraulic
press. During this process, the steel always remains cylindrical with a volume of $40 \mathrm{~cm}^{3}$. If the height is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$, find the rate at which the radius is increasing at the moment the radius is equal to 2 cm .

Solution:

We know $V=40=\pi r^{2} h$.

Want to find $\frac{d r}{d t}$ when $r=2$.

$$
\begin{aligned}
& 40=\pi r^{2} h \stackrel{d / d t}{\Rightarrow} \frac{d}{d t}(40)=\frac{d}{d t}\left(\pi r^{2} h\right) \\
& \Rightarrow 0=\pi\left[\frac{d\left(r^{2}\right)}{d t} \cdot h+r^{2} \cdot \frac{d h}{d t}\right] \text { (product rule) } \\
&=\pi\left[2 r \frac{d r}{d t} \cdot h+r^{2} \cdot \frac{d h}{d t}\right]
\end{aligned}
$$

$L_{\text {what is } h}$?

When $r=2, \quad 40=\pi r^{2} h=4 \pi h \quad \Rightarrow \quad h=\frac{40}{4 \pi}=\frac{10}{\pi}$

Thus,

$$
\begin{aligned}
& 0=\pi\left[2 r \frac{d r}{d t} \cdot h+r^{2} \cdot \frac{d h}{d t}\right] \\
& \stackrel{\div \pi}{\Rightarrow} 0=2(2) \frac{d r}{d t} \cdot \frac{10}{\pi}+2^{2}(-1) \\
& \Rightarrow 4=\frac{40}{\pi} \cdot \frac{d r}{d t} \\
& \Rightarrow \frac{d r}{d t}=\frac{\pi}{10} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

When $r=2$, the radius is increasing at $\pi / 10 \mathrm{~cm} / \mathrm{s}$.

Ex: A ship leaves port at noon, travelling $100 \mathrm{~km} / \mathrm{hr}$ due east. At 2pm, another ship leaves the same port travelling $150 \mathrm{~km} / \mathrm{hr}$ due north. At what rate is the distance between the ships increasing at 4 pm?

Solution:

Let $x=$ distance travelled by first ship at time t
$y=$ distance travelled by second ship at time t.
$z=$ distance between the ships at time t.

Since $x^{2}+y^{2}=z^{2}$, we have

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t}
$$

We know $\frac{d x}{d t}=100 \mathrm{~km} / \mathrm{hr}$ and $\frac{d y}{d t}=150 \mathrm{~km} / \mathrm{hr}$.
Furthermore, at 4 pm :

$$
\begin{aligned}
& x=100 \mathrm{~km} / \mathrm{hr} \cdot 4 \mathrm{hrs}=400 \mathrm{~km} \\
& y=150 \mathrm{~km} / \mathrm{hr} \cdot 2 \mathrm{hrs}=300 \mathrm{~km}
\end{aligned}
$$

and $z=\sqrt{x^{2}+y^{2}}=\sqrt{400^{2}+300^{2}}=500 \mathrm{~km}$.

Therefore,

$$
\begin{aligned}
& \not 2 x \frac{d x}{d t}+\not 2 y \cdot \frac{d y}{d t}=\not 2 z \frac{d z}{d t} \\
\Rightarrow & 400 \cdot 100+300 \cdot 150=500 \frac{d z}{d t} \\
\Rightarrow & \frac{d z}{d t}=\frac{400 \cdot 100+300 \cdot 150}{500}=170 \mathrm{~km} / \mathrm{hr} .
\end{aligned}
$$

At 4pm, the distance between the ships is increasing at a rate of $170 \mathrm{~km} / \mathrm{hr}$.

Additional Exercise:
Consider the matrix $A=\left[\begin{array}{cc}3 a & 2 b \\ -2 b & 1\end{array}\right]$.

If b increases at a rate of 2 units per second and the determinant, $\operatorname{det}(A)$, increases at a rate of 12 units per second, at what rate is a changing when $b=1$?

Solution: First, let $Z=\operatorname{det}(A)$, so

$$
z=\operatorname{det}\left[\begin{array}{cc}
3 a & 2 b \\
-2 b & 1
\end{array}\right]=3 a+4 b^{2}
$$

Differentiating with respect to t, we have

$$
\frac{d z}{d t}=3 \frac{d a}{d t}+8 b \frac{d b}{d t}
$$

We know $\frac{d b}{d t}=2$ and $\frac{d z}{d t}=12$, hence, when $b=1$,

$$
\begin{aligned}
\frac{d z}{d t}=3 \frac{d a}{d t}+8 b \frac{d b}{d t} & \Rightarrow 12=3 \frac{d a}{d t}+8(1) \cdot(2) \\
& \Rightarrow 12-16=3 \frac{d a}{d t} \\
& \Rightarrow \frac{d a}{d t}=\frac{-4}{3}
\end{aligned}
$$

\therefore When $b=1, a$ is decreasing at a rate of $4 / 3$ units per second.

