§4.7 - Global Extrema and Optimization

A function f has a

- global (or absolute) max on an interval I at x_{0} if $f\left(x_{0}\right) \geqslant f(x)$ for all $x \in I$.
- global (or absolute) min on an interval I at x_{0} if $f\left(x_{0}\right) \leqslant f(x)$ for all $x \in I$.

Fact: If $f:[a, b] \longrightarrow \mathbb{R}$ is continuous, then f will have global maxima and minima on $[a, b]$. They could occur at critical points in $[a, b]$ or at the endpoints.

The Process: To find global max/mins of a continuous function f on $[a, b]$,
(1) find all critical points of f in $[a, b]$,
(2) evaluate f (critical pts), $f(a)$ and $f(b)$,
(3) biggest $=$ global $\max ;$ smallest $=$ global \min.

Ex: Find the global extrema of $f(x)=x^{3}-12 x$ for $x \in[0,3]$.

Solution: Any critical points?

Ignore - not
in $[0,3]$.

$$
f^{\prime}(x)=\underbrace{3 x^{2}-12}_{\text {exists everywhere! }}=0 \Rightarrow 3 x^{2}=12 \Rightarrow x=-2 \text { or }+2
$$

Compare:

$$
\begin{aligned}
& f(0)=0 \quad \text { (Biggest!) } \\
& f(2)=-16 \text { (smallest!) } \\
& f(3)=-9
\end{aligned}
$$

\therefore Global max at $x=0$ with value $f(0)=0$; global min at $x=2$ with value $f(2)=-16$.

This technique can be used to solve all sorts of applied optimization problems!

Ex: A farmer has 800 m of fencing to build a rectangular giraffe enclosure. One side of the enclosure lies along a river and does not need to be fenced. Find the dimensions that will enclose the largest area.

Solution:
(1) Draw a picture. Identify any variables.

(2) Find an expression for the quantity being maximized or minimized. Identify any constraints.

Want to maximize $A=l \cdot w$.
Constraint: $l+2 w=800$ (so $l=800-2 w$)
(3) Write the quantity being optimized as a function of one variable. State its domain.

$$
A=l \cdot w=(800-2 w) \cdot w=800 w-2 w^{2}
$$

We need $w \geqslant 0$ and $2 w \leqslant 800$, so $w \leqslant 400$
$\omega=0$ means all fencing is used for ℓ.
$2 \omega=800$ means all fencing is used for w.
(4) Find the absolute \max / \min on this domain.

We maximize $A(\omega)=800 \omega-2 \omega^{2}, \quad \omega \in[0,400]$.

Critical points of $A(\omega)$?

$$
A^{\prime}(w)=\underbrace{800-4 w}=0 \Rightarrow 4 w=800
$$

$$
\Rightarrow \quad W=200 \quad \text { (Critical point!) }
$$

Compare: $\quad A(0)=0$

$$
\begin{aligned}
& A(200)=800(200)-2(200)^{2}=80000 \mathrm{~m}^{2} \\
& A(400)=0 \quad(\text { Global max }
\end{aligned}
$$

(5) Write a concluding statement.

The maximum possible area is $80000 \mathrm{~m}^{2}$ and occurs
when width $=200 \mathrm{~m}$ and length $=800-2 \omega=400 \mathrm{~m}$.

Ex: Suppose we have $300 \mathrm{~cm}^{2}$ of tin to build a cylindrical can (with top and bottom) with the largest possible volume. How much giraffe soup could such a can hold?

Solution:

Want to maximize $V=\pi r^{2} h$.

Constraint:

$$
\begin{aligned}
& \Rightarrow \pi r^{2}+\pi r^{2}+2 \pi r h=300 \\
& \Rightarrow 2 \pi r^{2}+2 \pi r h=300 .
\end{aligned}
$$

From this equation, we have

$$
2 \pi r h=300-2 \pi r^{2} \Rightarrow h=\frac{300-2 \pi r^{2}}{2 \pi r}
$$

Thus, the volume function is

$$
V=\pi r^{2} h=\pi r^{2}\left(\frac{300-2 \pi r^{2}}{2 \pi r}\right)=150 r-\pi r^{3}
$$

We note that $r \geqslant 0$ and, if all tin is used for the base and top (i.e., no height), then

$$
2 \pi r^{2} \leq 300 \Rightarrow r^{2} \leq \frac{150}{\pi} \Rightarrow r \leq \sqrt{\frac{150}{\pi}}
$$

Thus, we will maximize

$$
V(r)=150 r-\pi r^{3}, \quad r \in\left[0, \sqrt{\frac{150}{\pi}}\right]
$$

Any critical points?

$$
\begin{aligned}
V^{\prime}(r)=\underbrace{150-3 \pi r^{2}}_{\text {exists everywhere }}=0 & \Rightarrow 3 \pi r^{2}=150 \\
& \Rightarrow r^{2}=\frac{50}{\pi} \\
& \Rightarrow r= \pm \sqrt{\frac{50}{\pi}}
\end{aligned}
$$

Compare:

Discard $r=-\sqrt{\frac{50}{\pi}}$
since not in domain.

$$
\begin{aligned}
& V(0)=0 \\
& V\left(\sqrt{\frac{50}{\pi}}\right) \approx 398.9 \mathrm{~cm}^{3} \longleftarrow \max ! \\
& V\left(\sqrt{\frac{150}{\pi}}\right)=0
\end{aligned}
$$

The largest can will hold $\approx 398.9 \mathrm{~cm}^{3}$ of giraffe soup.

Additional Exercises

1. A company produces two goods: apples and bananas. If the company produces A tons of apples and B tons of bananas, their profit is given by $A^{2}+2 B^{2}$. Due to production constraints, $A+3 B$ cannot exceed 660 tons. How much of each good should be produced to maximize the company's profit?

Solution: The company will produce as much as possible to maximize profits, hence $A+3 B=660$. Thus, $A=660-3 B$.

We have to maximize $A^{2}+2 B^{2}$, which can be written as

$$
f(B)=(660-3 B)^{2}+2 B^{2}
$$

We need $B \geqslant 0$ and $3 B \leqslant 660$, so $B \leq 220$.

$$
\begin{aligned}
& \begin{array}{c}
B=0 \text { means we } \\
\text { only produce } A
\end{array} \bigcup_{3 B=660 \text { means }} \quad \text { we only produce } B
\end{aligned}
$$

Thus, we maximize $f(B)$ for $B \in[0,220]$.

Critical Points?

$$
\begin{aligned}
& f^{\prime}(B)=2(660-3 B)(-3)+4 B \quad \text { (exists everywhere) } \\
& f^{\prime}(B)=0 \Rightarrow-3960+22 B=0 \\
& \\
& \Rightarrow B=\frac{3960}{22}=180 \quad \text { (one critical point) }
\end{aligned}
$$

Compare: $\quad f(0)=435600 \longleftarrow \operatorname{Max}$ profit!

$$
\begin{aligned}
& f(180)=79200 \\
& f(220)=96800
\end{aligned}
$$

Profits are maximized when the company produces $B=0$ tons of bananas and $A=660-3 B=660$ tons of apples.
2. A wire 10 cm in length is cut into two pieces.

One piece is bent into a square and the other is bent into a circle. How should the wire be cut if We wish to minimize the total area? What if we wish to maximize the total area?

Solution: Let x be the length used to form the
square and y be the length used to form the circle.

We wish to optimize $A=A_{\text {square }}+A_{\text {circle }}$.

$$
A_{\text {square }}=\left(\frac{x}{4}\right)^{2}=\frac{x^{2}}{16}
$$

$$
\begin{aligned}
& y=2 \pi r \Rightarrow r=\frac{y}{2 \pi} \\
& \therefore A_{\text {circle }}=\pi r^{2}=\pi\left(\frac{y}{2 \pi}\right)^{2}=\frac{y^{2}}{4 \pi}
\end{aligned}
$$

Thus, $\quad A=\frac{x^{2}}{16}+\frac{y^{2}}{4 \pi}$.

We know that $x+y=$ length of wire $=10 \mathrm{~cm}$,
So $y=10-x$. Thus, we optimize

$$
A(x)=\frac{x^{2}}{16}+\frac{(10-x)^{2}}{4 \pi} \text { for } x \in[0,10]
$$

Critical Points?

$$
\begin{aligned}
A^{\prime}(x)= & \frac{x}{8}-\frac{(10-x)}{2 \pi} \quad \text { (exists everywhere) } \\
A^{\prime}(x)=0 & \Rightarrow \frac{\pi x-4(10-x)}{8 \pi}=0 \\
& \Rightarrow(\pi+4) x=40 \\
& \Rightarrow x=\frac{40}{\pi+4} \quad \text { (one critical point) }
\end{aligned}
$$

Compare: $A(0)=\frac{25}{\pi} \approx 7.96 \mathrm{~cm}^{2} \quad$ (maximum !)

$$
\begin{aligned}
& A\left(\frac{40}{\pi+4}\right)=\frac{25}{\pi+4} \approx 3.50 \mathrm{~cm}^{2} \quad \text { (minimum!) } \\
& A(10)=\frac{25}{4}=6.25 \mathrm{~cm}^{2}
\end{aligned}
$$

Largest area will be $\approx 7.96 \mathrm{~cm}^{2}$ and will occur when all 10 cm of wire is used for the circle.

Smallest area will be $\approx 3.50 \mathrm{~cm}^{2}$ and will occur when $x=\frac{40}{\pi+4} \mathrm{~cm}$ of wire is used for the square.
3. Consider the function $f(x)=\sqrt{x}, x \in[0,4]$.

Find the point (x, y) on the graph of $y=f(x)$ that is closest to $(2,0)$. What is this minimum distance?

Hint: Instead of minimizing the distance from (x, y) to $(2,0)$, it will be easier to minimize the square of this distance!

Solution: We wish to find the point (x, y) on graph of $y=\sqrt{x}$ that minimizes

$$
d=\sqrt{(x-2)^{2}+(y-0)^{2}}=\sqrt{x^{2}-4 x+4+y^{2}}
$$

the distance from (x, y) to $(2,0)$. Following the hint, we will instead (equivalently) find (x, y) that minimizes

$$
d^{2}=x^{2}-4 x+4+y^{2}
$$

the square of this distance. Since $y=\sqrt{x}$, we can
write this function as

$$
g(x)=x^{2}-4 x+4+(\sqrt{x})^{2}=x^{2}-3 x+4, \quad x \in[0,4]
$$

Any critical points?

$$
g^{\prime}(x)=\underbrace{2 x-3}_{\text {exists everywhere }}=0 \quad \Rightarrow \quad x=3 / 2 \quad \text { (one C.P.) }
$$

Next, we compare the values of g at the critical
points and the endpoints:

$$
\begin{aligned}
& g(0)=0^{2}-3(0)+4=4 \\
& g(3 / 2)=(3 / 2)^{2}-3\left(\frac{3}{2}\right)+4=\frac{7}{4} \longleftarrow \text { Minimum! } \\
& g(4)=4^{2}-3(4)+4=8
\end{aligned}
$$

The closest point is $(x, y)=(x, \sqrt{x})=\left(3 / 2, \sqrt{\frac{3}{2}}\right)$. The
minimum distance is $\sqrt{g(3 / 2)}=\sqrt{7 / 4}=\sqrt{7} / 2$.
Since g is the square of the distance

