$\delta 4.1$ - Newton's Method

Last time we used the IVT to show that

$$
f(x)=x^{5}+x-1=0
$$

has a solution X^{*} in the interval $[0,1]$.

Great, we know a solution exists, but how do
we find it? Unfortunately, there is no way to calculate x^{*} exaclty! Our best option:

Approximate a Solution!

Well start with an inital guess, Ko. Then, rather than solving $f(x)=0$ (too hard!), well instead find where the tangent line at x_{0} is 0 .

Question 1: What is the equation of the tangent line to f at x_{0} ?

Answer: Slope $=f^{\prime}\left(x_{0}\right)$, line passes through $\left(x_{0}, f\left(x_{0}\right)\right.$.

Hence, if (x, y) is any point on the line, then

$$
\frac{y-f\left(x_{0}\right)}{x-x_{0}}=\frac{\text { rise }}{\text { run }}=\text { slope }=f^{\prime}\left(x_{0}\right)
$$

$$
\begin{aligned}
& \Rightarrow \quad y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& \Rightarrow y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
\end{aligned}
$$

equation of tangent line to f at x_{0}.

Question 2: At what point x is the tangent line equal to 0 ?

Answer:

$$
\begin{aligned}
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=0 & \Rightarrow f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=-f\left(x_{0}\right) \\
& \Rightarrow x-x_{0}=-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} \\
& \Rightarrow x=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
\end{aligned}
$$

Well call this new approximation X_{1}

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

Hopefully x_{1} will be closer to x^{*} than x_{0} was.

To get even closer.
repeat with x_{0} replaced by x_{1} ! This process is Known as...

Newton's Method
To approximate a solution X^{*} to an equation $f(x)=0$,

1. Start with an initial guess X_{0} (ideally, close to x^{*}).
2. For each $n=1,2,3, \ldots$, let

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Back to our example...

Suppose we wish to approximate a solution $X^{*} \in[0,1]$ to $f(x)=x^{5}+x-1=0$ correct to 6 decimal places.

Let's use Newton's method with initial guess $x_{0}=1$.

We have $f^{\prime}(x)=5 x^{4}+1$, and hence

$$
\left.\begin{array}{l}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=x_{0}-\frac{\left(x_{0}^{5}+x_{0}-1\right)}{5 x_{0}^{4}+1}=0.8333 \ldots \\
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=0.764382 \ldots \\
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=0.755024 \ldots \\
x_{4}=x_{3}-\frac{f\left(x_{3}\right)}{f^{\prime}\left(x_{3}\right)}=0.754877 \ldots \\
x_{5}=x_{4}-\frac{f\left(x_{4}\right)}{f^{\prime}\left(x_{4}\right)}=0.754877 \ldots
\end{array}\right\} \begin{aligned}
& \text { First } 6 \text { decimal } \\
& \text { po we can stop. } \\
& \text { so wave stabilized, }
\end{aligned}
$$

Ex: Previously, we used the IVT to show that $\cos x=2 x$ has a solution $x^{*} \in[0, \pi / 2]$.

Approximate X^{*} correct to 7 decimal places.

Solution: We are attempting to approximate a root of $f(x)=\cos (x)-2 x=0$. We have $f^{\prime}(x)=-\sin (x)-2$ and Well use $X_{0}=0.5$ as an initial guess. We have

$$
\begin{aligned}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} & =x_{0}-\frac{\left(\cos \left(x_{0}\right)-2 x_{0}\right)}{-\sin \left(x_{0}\right)-2} \\
& =0.450626693 \ldots
\end{aligned}
$$

$$
\left.\begin{array}{l}
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=0.450183647 \ldots \\
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=0.450183611 \ldots
\end{array}\right\} \begin{aligned}
& \text { stop, since } \\
& \text { first } 7 \text { decimal } \\
& \text { places have } \\
& \text { stabilized }
\end{aligned}
$$

$$
\therefore \quad x^{*} \approx 0.4501836
$$

Exercise: Use Newton's method to approximate $\sqrt{7}$
correct to 3 decimal places.

Solution: $\sqrt{7}$ is a root of $f(x)=x^{2}-7=0$ and
we guess that $\sqrt{7}$ should be somewhat near $\sqrt{9}=3$,
so $x_{0}=3$ will be our initial guess.

$$
\left.\begin{array}{c}
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=x_{0}-\frac{x_{0}^{2}-7}{2 x_{0}}=2.6 \overline{6} \\
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2.6458 \overline{3} \\
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=2.645751312 \ldots
\end{array}\right\}
$$

WARNING: In some cases, Newton's method can fail!

Ex: $f(x)=\arctan (x)$ has a root at $x=0$.

Let's attempt to approximate this root using

Newton's method with $X_{0}=2$. We get...

$$
\begin{aligned}
& x_{1}=-3.53 \ldots \\
& x_{2}=13.95 \ldots \\
& x_{3}=-279.34 \ldots \\
& x_{4}=122016.99 \ldots
\end{aligned}
$$

^Not converging to anything!

Fix: Choose a new X_{0} closer to X^{*}

