§4.3 -Local Maxima and Minima
f is said to have
(i) a local maximum at x_{0} if there exists an open interval I around x_{0} such that $f(x) \leq f\left(x_{0}\right)$ for all $x \in I$.
(ii) a local minimum at x_{0} if there exists an open interval I around x_{0} such that $f(x) \geqslant f\left(x_{0}\right)$ for all $x \in I$.

Ex:

f has a local max at $x=3$ with value 5, local \min at $x=6$ with value 1 , local max at $x=8$ with value 3 .

Fact: Local maxima and minima can only occur at Critical points! However, not every critical point is necessarily a local max or min.

Ex: Let $f(x)=x^{3}$. Then $f^{\prime}(x)=3 x^{2}$, which is 0 at $x=0$, hence $x=0$ is a C.P. of f.

However there is neither a local max nor min at $x=0$.

Given a critical point of f, how can we tell whether it corresponds to a local max, local min, or neither?

The First Derivative Test

Let $x=c$ be a critical point at which f is continuous
(i) If $f^{\prime}(x)$ changes from + to - around $x=c$,
then there is a local max at $x=c$.
(ii) If $f^{\prime}(x)$ changes from + to - around $x=c$, then there is a local max at $x=c$.
(iii) If $f^{\prime}(x)$ doesn't change sign around $x=c$, then there is neither a local max nor min at $x=c$.

Ex: We saw that $f(x)=x^{4}-4 x^{3}+1$ has critical points at $x=0$ and $x=3$.

$$
\begin{aligned}
& \Rightarrow \text { Neither a local max } \\
& \text { nor min at } X=0 \text {. } \\
& \Longrightarrow \Rightarrow \text { Local min at } x=3 \\
& \text { with value } f(3)=-26 \text {. }
\end{aligned}
$$

Ex: We saw that $f(x)=\frac{2-x}{(x+1)^{2}}$ has a critical point at $x=5$ (and not at $x=-1$, since $f(-1)$ is not defined!)

\Rightarrow Local min at $x=5$
with value $f(5)=\frac{-1}{12}$

Ex: Find all local maxima and minima of $f(x)=e^{-x^{2}}$.

Solution: First find the critical points.
$f^{\prime}(x)=-2 x e^{-x^{2}}$, which exists everywhere.

$$
f^{\prime}(x)=-2 x \underbrace{e^{-x^{2}}}_{>0 \text { always }}=0 \Rightarrow-2 x=0 \Rightarrow x=0 .
$$

$$
\begin{array}{r}
\Rightarrow \quad \text { local max at } x=0 \\
\text { with value } f(0)=e^{-0^{2}}=1
\end{array}
$$

