§ 4.12 - Linear Approximation \& Differentials

Recall: If $f^{\prime}(a)$ exists,
then the tangent line to $f(x)$ at $x=a$ is

$$
y=f(a)+f^{\prime}(x)(x-a)
$$

Let's think of the tangent line as a function, $L_{a}(x)$.

$$
L_{a}(x)=f(a)+f^{\prime}(a)(x-a)
$$

If we zoom in closely around the point of tangency...

... we see that $f(x)$ and $L_{a}(x)$ are nearly indistinguishable! For this reason, $L_{a}(x)$ is
called the linear approximation or the linearization to $f(x)$ at $x=a$.

$$
f(x) \approx L_{a}(x)=f(a)+f^{\prime}(a)(x-a) \text { for } x \text { near } a \text {. }
$$

Ex: Find the linear approximation to $f(x)=\sqrt{x}$ at $x=4$.
Use this to approximate $\sqrt{4.04}$ and $\sqrt{3.92}$.

Solution: $\quad L_{4}(x)=f(4)+f^{\prime}(4)(x-4)$ where $f(4)=\sqrt{4}=2$ and $f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \Rightarrow f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}$. Hence

$$
L_{4}(x)=2+\frac{1}{4}(x-4)
$$

$$
\begin{aligned}
\sqrt{4.04}=f(4.04) \approx L_{4}(4.04) & =2+\frac{1}{4}(4.04-4) \\
& =2+\frac{1}{4}(0.04) \\
& =2+0.01=2.01
\end{aligned}
$$

Actual value: $\sqrt{4.04}=2.009975 \ldots$

$$
\begin{aligned}
\sqrt{3.92}=f(3.92) \approx L_{4}(3.92) & =2+\frac{1}{4}(3.92-4) \\
& =2+\frac{1}{4}(-0.08) \\
& =2-0.02=1.98
\end{aligned}
$$

Actual Value: $\sqrt{3.92}=1.979898 \ldots$ Close!!

Note: If x is far from a, the approximation $L_{a}(x) \approx f(x)$ is often much less accurate.

From our last example at $x=100$:

$$
L_{4}(100)=2+\frac{1}{4}(100-4)=26 \quad \text { while } \quad f(100)=\sqrt{100}=10
$$

Ex: What is the linearization of $f(x)=\sin x$ at $x=0$?

Solution: $f(0)=\sin (0)=0$ and $f^{\prime}(0)=\cos (0)=1$, so

$$
L_{0}(x)=f(0)+f^{\prime}(0)(x-0)=x
$$

Thus, $\sin (x) \approx x$ when x is close to 0 . This small angle approximation is used heavily in Physics \& Engineering!

Differentials

We can alternatively think of the tangent line approximation as an estimate of the change in $y(\Delta y)$ resulting from a small change in $x(\Delta x)$.

We can calculate the change in the tangent line as

$$
\begin{aligned}
d y & =L_{a}(a+\Delta x)-f(a) \\
& =\left[f(a)+f^{\prime}(a)((a+\Delta x)-\alpha)\right]-f(a)=f^{\prime}(a) \Delta x
\end{aligned}
$$

Thus, if Δx is small (in which case we write $\Delta x=d x$), the change in $y=f(x), \Delta y$, that we can expect when moving from $x=a$ to $x=a+\Delta x$ is

$$
\Delta y \approx d y=f^{\prime}(a) d x
$$

We call $d x$ and $d y$ the differentials of x and y, respectively.

Ex: If $f^{\prime}(1)=3$, approximate the change in $f(x)$ as we move from $x=1$ to $x=1.02$.

Solution: We have $d x=\Delta x=1.02-1=0.02$, hence

$$
\Delta y \approx d y=f^{\prime}(1) \Delta x=3 \cdot 0.02=0.06
$$

\therefore The y value should increase by ≈ 0.06 when we change the input from $x=1$ to $x=1.02$.

Ex: Estimate the change in $y=f(x)=\sqrt{x}$ as
x increase from 4 to 4.04 .

Solution: We have $d x=\Delta x=4.04-4=0.04$ and

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \Rightarrow f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4} .
$$

Thus, $\Delta y \approx d y=f^{\prime}(4) d x$
Since $f(4)=\sqrt{4}=2$, this

$$
=\frac{1}{4}(0.04)
$$

means $f(4.04) \approx 2.01$.
This is exactly what we

$$
=0.01 \text {. }
$$

Additional Exercises

1. Use a linear approximation to estimate $\sqrt[3]{1003}$
2. Estimate the change in volume of a cube when its side length decreases from 10 cm to 9.4 cm .

Solutions:

1. Let's use a linear approximation to $f(x)=\sqrt[3]{x}$
at the nearby point $a=1000$. We have

$$
\begin{gathered}
f(1000)=\sqrt[3]{1000}=10 \\
f^{\prime}(x)=\left(x^{1 / 3}\right)^{\prime}=\frac{1}{3} x^{-2 / 3} \Rightarrow f^{\prime}(1000)=\frac{1}{3}(1000)^{-2 / 3}=\frac{1}{300}
\end{gathered}
$$

hence, the linear approximation is

$$
\begin{aligned}
L_{1000}(x) & =f(1000)+f^{\prime}(1000)(x-1000) \\
& =10+\frac{1}{300}(x-1000) .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\sqrt[3]{1003}=f(1003) & \approx L_{1000}(1003) \\
& =10+\frac{1}{300}(1003-1000) \\
& =10+\frac{3}{300} \\
& =10.01
\end{aligned}
$$

2. The volume of the cube is $V=s^{3}$, where
$S=$ side length. We have $V^{\prime}=3 s^{2}$, so $V^{\prime}(10)=3(10)^{2}=300$.

When s decreases from 10 cm to 9.4 cm , we have

$$
d s=\Delta s=10-9.4=-0.6
$$

and therefore the resulting change in volume is

$$
\Delta V \approx d V=V^{\prime}(10) d s=300(-0.6)=-180 \mathrm{~cm}^{3}
$$

