Limits at $\pm \infty$

A strategy that sometimes helps to evaluate limits as $x \longrightarrow \pm \infty$ is to factor the largest terms from the numerator and denominator.

Ex: Evaluate $\lim _{x \rightarrow \infty} \frac{2 x^{3}+x}{7 x^{3}+1}<" \frac{\infty}{\infty} "$
Solution:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{3}+x}{7 x^{3}+1} & =\lim _{x \rightarrow \infty} \frac{x^{3}\left(2+\frac{x}{x^{3}}\right)}{x^{3}\left(7+\frac{1}{x^{3}}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x^{2}}}{7+\frac{1}{x^{3}}}=\frac{2+0}{7+0}=\frac{2}{7}
\end{aligned}
$$

Ex: If $f(x)=\frac{e^{x}+1}{e^{2 x}+1}$, find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.

Solution: $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{2 x}+1} \quad " \frac{\infty}{\infty}$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{e^{x} \frac{\left(1+\frac{1}{e^{x}}\right)}{e^{2 x}\left(1+\frac{1}{e^{2 x}}\right)}=e^{x-2 x}=e^{-x}=\frac{1}{e^{x}}}{=\lim _{x \rightarrow \infty} \frac{1}{e^{x}} \frac{\left(1+\frac{1}{e^{x}}\right)^{0}}{\left(1+\frac{1}{e^{2 x}}\right)^{2}} 0} \\
& =0 \cdot \frac{1+0}{1+0}=0.1=0
\end{aligned}
$$

Also $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{e^{x^{0}}+1}{e^{2 x^{20}}+1}=\frac{0+1}{0+1}=1$

Note: If $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$ where L is a (finite) real number, then f has a horizontal asymptote (HA) at $y=L$.

Ex: Find all horizontal asymptotes of $f(x)=\frac{\sqrt{x^{2}+1}}{x+3}$

Solution: Let's compute $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$!

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+1}}{x+3}=\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}} \sqrt{1+\frac{1}{x^{2}}}}{x\left(1+\frac{3}{x}\right)}=\lim _{x \rightarrow \infty} \frac{|x| \sqrt{1+\frac{1}{x^{2}}}}{x\left(1+\frac{3}{x}\right)} \quad \begin{aligned}
& \text { since } x \rightarrow \infty, \\
& |x|=x .
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{x \sqrt{1+\frac{1}{x^{2}}}}{x\left(1+\frac{3}{x}\right)^{2}} 0 \\
& =\frac{\sqrt{1+0}}{(1+0)}=1 .
\end{aligned}
$$

Thus, there is a horizontal asymptote at $y=1$.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}+1}}{x+3}=\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}} \sqrt{1+\frac{1}{x^{2}}}}{x\left(1+\frac{3}{x}\right)} & =\lim _{x \rightarrow-\infty} \frac{x}{x\left(1+\frac{3}{x}\right)} \quad \begin{array}{l}
1+\frac{1}{x^{2}} \\
\text { since } x \rightarrow-\infty, \\
|x|=-x
\end{array} \\
& =\lim _{x \rightarrow-\infty} \frac{-x \sqrt{1+\frac{1}{x^{2}}}}{x\left(1+\frac{3}{x}\right)}, 0 \\
& =\frac{-\sqrt{1+0}}{(1+0)}=-1
\end{aligned}
$$

Thus, there is a horizontal asymptote at $y=-1$.

This function has two horizontal asymptotes!

Can a function cross its horizontal asymptote? Yes!
e.g. We showed previously that $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$, hence $y=\frac{\sin x}{x}$ has a HA at $y=0$.

However, the graph crosses $y=0$ infinitely many times!

Infinite Limits
Limits of the form " $\frac{ \pm \infty}{\text { constant } "}$ or "constant" ${ }^{0}$ are not indeterminate - they are $\pm \infty$ depending on signs.

Ex: $\lim _{x \rightarrow 3^{+}} \frac{(x-2)(x-5)}{(x-1)(x-3)}=-\infty$ since the limit has the form " $\frac{1 \cdot(-2) "}{2 \cdot 0^{+}}$"where 0^{+}denotes a positive quantity approaching 0 .

Note: If a is a (finite) real number and $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$ or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$, then f has a vertical asymptote (VA) at $x=a$.

Ex: Does $f(x)=\frac{x-2}{x^{3}-2 x^{2}}$ have any vertical asymptotes?

Solution: Vertical asymptotes may occur when attempting
to divide by 0 . Note that

$$
x^{3}-2 x^{2}=0 \Leftrightarrow x^{2}(x-2)=0 \Leftrightarrow x=0 \text { or } x=2
$$

Let's now check $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 2} f(x)$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x-2}{x^{3}-2 x^{2}}=\lim _{x \rightarrow 0} \frac{x-2}{x^{2}(x-2)} & =\lim _{x \rightarrow 0}{\frac{1}{x^{2}}}^{2}=\infty \\
& \Rightarrow \text { VA at } x=0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x-2}{x^{3}-2 x^{2}}=\lim _{x \rightarrow 2} \frac{x-2}{x^{2}(x-2)} & =\lim _{x \rightarrow 2} \frac{1}{x^{2}}=\frac{1}{2^{2}}=\frac{1}{4} \\
& \Rightarrow \text { No VA at } x=2
\end{aligned}
$$

We see a VA at $x=0$ and a hole at $x=2$.

Additional Exercises:

1. Evaluate $\lim _{x \rightarrow-\infty} \frac{x^{2 / 3}+x^{1 / 3}}{x^{2 / 3}+1}$
2. Evaluate $\lim _{x \rightarrow \infty}(\sqrt{x+2}-\sqrt{x})$
3. Does $f(x)=\frac{\sin x}{\tan x}$ have any vertical or horizontal asymptotes?

Solutions:
1.

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x^{2 / 3}+x^{1 / 3}}{x^{2 / 3}+1} & =\lim _{x \rightarrow-\infty} \frac{x^{2 / 3}\left(1+\frac{x^{1 / 3}}{x^{2 / 3}}\right)}{x^{2 / 3}\left(1+\frac{1}{x^{2 / 3}}\right)} \\
& =\lim _{x \rightarrow-\infty} \frac{\left(1+\frac{1}{x^{1 / 3}}\right)^{0}}{\left(1+\frac{1}{x^{2 / 3}}\right)^{0}}=\frac{1+0}{1+0}=1
\end{aligned}
$$

2.

$$
\begin{aligned}
\lim _{x \rightarrow \infty}(\sqrt{x+2}-\sqrt{x}) & =\lim _{x \rightarrow \infty} \frac{(\sqrt{x+2}-\sqrt{x})}{1} \cdot \frac{(\sqrt{x+2}+\sqrt{x})}{(\sqrt{x+2}+\sqrt{x})} \\
& =\lim _{x \rightarrow \infty} \frac{(x+2)-x}{\sqrt{x+2}+\sqrt{x}} \\
& =\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x+2}+\sqrt{x}}=\infty
\end{aligned}
$$

3. Vertical asymptotes of $f(x)=\frac{\sin x}{\tan x}$ could occur

When $\tan x=0$, or equivalently, when $x=k \cdot \pi, k \in \mathbb{Z}$.
However,

$$
\lim _{x \rightarrow k \pi} \frac{\sin x^{k^{\prime \prime 0}}}{\tan x}=\lim _{x \rightarrow k \pi} \frac{\sin x}{\left(\frac{\sin x}{\cos x}\right)}=\lim _{x \rightarrow k \pi} \cos x=\left\{\begin{aligned}
1 & \text { if } k \text { is even, } \\
-1 & \text { if } k \text { is odd. }
\end{aligned}\right.
$$

Since none of these limits are $\pm \infty$, there are no
vertical asymptotes.

For horizontal asymptotes, we examine $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$. We have

$$
\lim _{x \rightarrow \pm \infty} \frac{\sin x}{\tan x}=\lim _{x \rightarrow \pm \infty} \frac{\sin x}{\left(\frac{\sin x}{\cos x}\right)}=\lim _{x \rightarrow \pm \infty} \cos x \text {, which DNE. }
$$

Thus, no horizontal asymptotes either!

