Chapter 2: Calculus Begins!
§ 2.1-2.3: Limits

We've studied how functions behave at a point, but often well be interested in how a function behaves near a point.

Intro Example: Consider the graph of $f(x)$ shown below.

As x approaches $a, f(x)$ approaches 3 .
As x approaches $b, f(x)$ approaches 1.
As x approaches $c, f(x)$ approaches 1 if x comes from left 2 if x comes from right

As x approaches $d, f(x)$ approaches ∞.

If $f(x)$ approaches a finite number L as x gets infinitely close to a but not equal to a, we write $\lim _{x \rightarrow a} f(x)=L$
"The limit of $f(x)$ as x approaches a exists and is equal to $L^{\prime \prime}$

Note: The limit L must be the same if x comes from the left or from the right! These limits are denoted

$$
\begin{array}{ll}
\lim _{x \rightarrow a^{-}} f(x) & (x \rightarrow a \text { from left }) \\
\lim _{x \rightarrow a^{+}} f(x) & (x \rightarrow a \text { from right })
\end{array}
$$

If $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$ or if $f(x)$ approaches $\pm \infty$ or if $f(x)$ doesn't approach anything as $x \rightarrow a$, we say $\lim _{x \rightarrow a} f(x)$ does not exist (DNE).

In our intro example...

- $\lim _{x \rightarrow a} f(x)=3$
- $\lim _{x \rightarrow b} f(x)=1 \longleftarrow$ at $x=b$.
- $\lim _{x \rightarrow c} f(x)$ DNE since $\lim _{x \rightarrow c^{-}} f(x)=1$ while $\lim _{x \rightarrow c^{+}} f(x)=2$ Not equal
- $\lim _{x \rightarrow d} f(x)=\infty \quad$ (so the limit DNE!)

Limit Laws: If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then...
(finite) real numbers
(i) $\lim _{x \rightarrow a} c \cdot f(x)=c \cdot L \quad(c \in \mathbb{R})$
(ii) $\lim _{x \rightarrow a} f(x) \pm g(x)=L \pm M$
(iii) $\lim _{x \rightarrow a} f(x) \cdot g(x)=L \cdot M$
(iv) $\lim _{x \rightarrow a} f(x) / g(x)=L / M \quad$ (provided $M \neq 0$)

Using these laws, we can evaluate basic limits of polynomials and rational functions.

Ex: $\lim _{x \rightarrow 1} x^{2}+3 x=\left[\lim _{x \rightarrow 1} x^{2}\right]+3\left[\lim _{x \rightarrow 1} x\right]=1^{2}+3 \cdot 1=4$
Ex: $\lim _{x \rightarrow 3} \frac{x^{2}+3 x+2}{x+1}=\frac{\lim _{x \rightarrow 3}\left(x^{2}+3 x+2\right)}{\lim _{x \rightarrow 3}(x+1)}=\frac{3^{2}+3(3)+2}{3+1}=5$

If the limit results in an indeterminate form (e.g., "O", " $\pm \infty$ " " " $0 . \pm \infty$ ", " ∞ - " " $^{ \pm}$) more work must be done!

Plugging in $x=-1$ gives "O".
Ex: $\lim _{x \rightarrow 2} \frac{x^{2}+2 x-8}{x-2} r$ which is indeterminate!

$$
\begin{align*}
& =\lim _{x \rightarrow 2} \frac{(x-2)(x+4)}{x-2}<\begin{array}{c}
\text { Factor \& } \\
\text { Cancel! }
\end{array} \\
& =\lim _{x \rightarrow 2}(x+4) \\
& =2+4=6
\end{align*}
$$

Ex: $\lim _{x \rightarrow \pi / 2} \frac{\cos (x)}{\sin (2 x)} \longleftarrow \quad " \frac{0}{0}{ }^{\prime}$ type \Rightarrow indeterminate!

$$
=\lim _{x \rightarrow \pi / 2} \frac{\cos (x)}{2 \sin (x) \cos (x)}=\lim _{x \rightarrow \pi / 2} \frac{1}{2 \sin (x)}=\frac{1}{2 \sin (\pi / 2)}=\frac{1}{2}
$$

Another Trick: Multiply and divide by the conjugate of the numerator or denominator.

Ex: $\quad \lim _{x \rightarrow 1} \frac{\sqrt{2}-\sqrt{x+1}}{x-1} \longleftarrow " \frac{0}{0} "$ type \Rightarrow indeterminate!

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{\sqrt{2}-\sqrt{x+1}}{x-1} \cdot \frac{\sqrt{2}+\sqrt{x+1}}{\sqrt{2}+\sqrt{x+1}} \\
& =\lim _{x \rightarrow 1} \frac{2+\sqrt{2 \sqrt{x+1}-\sqrt{2} \sqrt{x+1}-(x+1)}}{(x-1)(\sqrt{2}+\sqrt{x+1})} \\
& =\lim _{x \rightarrow 1} \frac{(1-x)}{\text { the numerator }} \\
& =\lim _{x \rightarrow 1} \frac{-1}{\sqrt{2}+\sqrt{x+1}(\sqrt{2}+\sqrt{x+1})} \\
& =\frac{-1}{\sqrt{2}+\sqrt{1+1}}=\frac{-1}{2 \sqrt{2}}
\end{aligned}
$$

With absolute value and other piecewise functions, you'll often need to check left and right limits.

Ex: $\lim _{x \rightarrow 0} \frac{|x|-x}{x} \longleftarrow " \frac{0}{0} "$ type \Rightarrow indeterminate!
The left- and right-sided limits are

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{|x|-x}{x} & =\lim _{x \rightarrow 0^{-}} \frac{-x-x}{x} \quad \lim _{x \rightarrow 0^{+}} \frac{|x|-x}{x}
\end{aligned}=\lim _{x \rightarrow 0^{+}} \frac{x-x}{x}
$$

Since $\lim _{x \rightarrow 0^{-}} \frac{|x|-x}{x} \neq \lim _{x \rightarrow 0^{+}} \frac{|x|-x}{x}$, the limit DNE!

More complicated limits require more advanced methods!

Ex: $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right) \quad " 0 . ? ? ? " \Rightarrow$ indeterminate!

Notice that $-1 \leq \cos \left(\frac{1}{x}\right) \leq 1$ for all x, hence

$$
\cdot x^{2}\left(-x^{2} \leqslant x^{2} \cos \left(\frac{1}{x}\right) \leqslant x^{2}\right.
$$

Taking limits as $x \rightarrow 0$, we have

$$
\begin{aligned}
& \underbrace{\lim _{x \rightarrow 0}-x^{2}}_{=0} \\
\Rightarrow \quad \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right) & \leq \underbrace{\lim _{x \rightarrow 0} x^{2}}_{=0} \\
\Rightarrow \quad 0 & \leq \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right) \leq 0
\end{aligned}
$$

So, $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)$ must also be 0 .

We have just seen our first application of the Limit Squeeze Theorem!

The Squeeze Theorem
If $f(x) \leq g(x) \leq h(x)$ for all x near a and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$ too!

Ex: $\lim _{x \rightarrow \infty} \frac{\sin x}{x}<\frac{\text { ???" }}{0} \Rightarrow$ indeterminate
We have

$$
\begin{aligned}
-1 \leqslant \sin x \leq 1 & \stackrel{\div x}{\Longrightarrow} \frac{-1}{x} \leqslant \frac{\sin x}{x} \leqslant \frac{1}{x} \\
& \Longrightarrow \underbrace{\lim _{x \rightarrow \infty} \frac{-1}{x}}_{=0} \leqslant \lim _{x \rightarrow \infty} \frac{\sin x}{x} \leqslant \underbrace{\lim _{x \rightarrow \infty} \frac{1}{x}}_{=0} \\
& \Longrightarrow 0 \leqslant \lim _{x \rightarrow \infty} \frac{\sin x}{x} \leqslant 0
\end{aligned}
$$

Hence by the squeeze theorem, $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$.

Additional Exercise: Evaluate the following.
(a) $\lim _{x \rightarrow 1} \frac{x-1}{2+\sqrt{x+3}}$
(b) $\lim _{x \rightarrow 5^{-}} \frac{x^{2}-25}{x^{3}-4 x^{2}-5 x}$
(c) $\lim _{x \rightarrow \pi} \frac{\sin (x+\pi)}{\sin (x-\pi)}$
(d) $\lim _{x \rightarrow 0}|x| \cdot \sin \left(\frac{1}{2 x}\right)$
(e) $\lim _{x \rightarrow 3} \frac{|x|+|x-3|-3}{x-3}$
(f) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \cos x \cdot \cos (\tan x)$

Solutions
(a) $\lim _{x \rightarrow 1} \frac{x-1}{2-\sqrt{x+3}}=\lim _{x \rightarrow 1} \frac{x-1}{2-\sqrt{x+3}} \cdot \frac{(2+\sqrt{x+3})}{(2+\sqrt{x+3})} \longleftrightarrow$ conjugate of

$$
\begin{aligned}
& =\lim _{x \rightarrow 1} \frac{(x-1)(2+\sqrt{x+3})}{(2-\sqrt{x+3})(2+\sqrt{x+3})} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(2+\sqrt{x+3})}{4+2 \sqrt{x+3}-2 \sqrt{x+3}-(\sqrt{x+3})^{2}} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(2+\sqrt{x+3})}{4-(x+3)} \\
& =\lim _{x \rightarrow 1} \frac{(x-1)(2+\sqrt{x+3})}{-(x-1)}=-(2+\sqrt{1+3})=-4
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \lim _{x \rightarrow 5^{-}} \frac{x^{2}-25}{x^{3}-4 x^{2}-5 x}=\lim _{x \rightarrow 5^{-}} \frac{(x-5)(x+5)}{x(x-5)(x+1)} \\
& \text { "O"" } \Rightarrow \text { indeterminate! }=\lim _{x \rightarrow 5^{-}} \frac{x+5}{x(x+1)}=\frac{10}{5 \cdot 6}=\frac{1}{3}
\end{aligned}
$$

(c) $\lim _{x \rightarrow \pi} \frac{\sin (x+\pi)}{\sin (x-\pi)}=\lim _{x \rightarrow \pi} \frac{\sin x \cdot \overbrace{=-1}^{\cos \pi}+\cos x \cdot \sin \pi}{\sin x \cdot \underbrace{\cos \pi}_{=-1}+\cos x \cdot \sin _{=1} \pi}=0$

$$
\text { "으" } \Rightarrow \text { indeterminate! }=\lim _{x \rightarrow \pi} \frac{\sin x \cdot(-1)}{\sin x \cdot(-1)}=1
$$

(d) $\lim _{x \rightarrow 0}|x| \cdot \sin \left(\frac{1}{2 x}\right) \longleftarrow " 0 \cdot ? ? ? " \Rightarrow$ indeterminate!

Note that $-1 \leq \sin \left(\frac{1}{2 x}\right) \leq 1$ for all x, hence

$$
\begin{aligned}
& \quad|x| \underbrace{}_{-|x|} \leq|x| \sin \left(\frac{1}{2 x}\right) \leq|x| \\
\Rightarrow \quad & \underbrace{\lim _{x \rightarrow 0}-|x|}_{=0} \leq \lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{2 x}\right) \leq \underbrace{\lim _{x \rightarrow 0}|x|}_{=0} \\
\Rightarrow \quad & 0 \leq \lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{2 x}\right) \leq 0
\end{aligned}
$$

Hence, by the Squeeze Theorem, $\lim _{x \rightarrow 0}|x| \sin \left(\frac{1}{2 x}\right)=0$
(e) $\lim _{x \rightarrow 3} \frac{|x|+|x-3|-3}{x-3} \longleftarrow " \frac{0}{0} " \Rightarrow$ indeterminate!

Note that since $x \longrightarrow 3$, we have $x>0$, hence $|x|=x$.

For $|x-3|$, let's look at the left- and right-sided limits!

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} \frac{|x|+|x-3|-3}{x-3} & =\lim _{x \rightarrow 3^{-}} \frac{x-(x-3)-3}{x-3} \\
& =\lim _{x \rightarrow 3^{-}} \frac{0}{x-3}=\lim _{x \rightarrow 3^{-}} 0=0
\end{aligned}
$$

$$
\begin{aligned}
\lim _{x \rightarrow 3^{+}} \frac{|x|+|x-3|-3}{x-3} & =\lim _{x \rightarrow 3^{+}} \frac{x+(x-3)-3}{x-3} \\
& =\lim _{x \rightarrow 3^{+}} \frac{2 x-6}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{2(x-3)}{x-3}=2
\end{aligned}
$$

Since $\lim _{x \rightarrow 3^{-}} \frac{|x|+|x-3|-3}{x-3} \neq \lim _{x \rightarrow 3^{+}} \frac{|x|+|x-3|-3}{x-3}$, the limit DNE
(f) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \cos x \cdot \cos (\tan x) \quad$ " $0 \cdot ?$? " " since $\tan x \rightarrow \infty$ as $x \rightarrow \frac{\pi}{2}^{-}$

Note that $-1 \leq \cos (\tan x) \leq 1$ for all x, hence

$$
\begin{aligned}
& \quad-\cos x \leq \cos x \cdot \cos (\tan x) \leq \cos x \\
& \Rightarrow \quad \underbrace{\lim _{x \rightarrow \pi / 2^{-}}-\cos x}_{=0} \leq \lim _{x \rightarrow \pi / 2^{-}} \cos x \cdot \cos (\tan x) \leq \underbrace{\lim _{x \rightarrow \pi / 2^{-}} \cos x}_{=0} \\
& \Rightarrow \quad
\end{aligned} \quad 0 \leqslant \lim _{x \rightarrow \pi / 2^{-}} \cos x \cdot \cos (\tan x) \leq 0
$$

By the Squeeze Theorem, $\lim _{x \rightarrow \pi / 2^{-}} \cos x \cdot \cos (\tan x)=0$.

