§ 4.11-L'Hopital's Rule

It turns out that derivatives can help us evaluate
limits, specifically limits of indeterminate form (where we can't just "plug in" $x=a$):

$$
" 0 / 0, " \infty / \infty, " 0 \cdot \infty ", " \infty, \quad " 0^{0 "}, \quad " 1 \infty, " \infty-\infty "
$$

L'Hopital's Rule
Suppose that near $x=a$, except possibly at $x=a$, f and g are differentiable and $g^{\prime}(x) \neq 0$.

If $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ has the form "O" or " $\pm \infty$ ", and if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists or is $\pm \infty$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Examples: Evaluate the following limits.
(a)

$$
\begin{aligned}
& \lim _{x \rightarrow 4} \frac{x^{2}-x-12}{x-4}\left(\frac{0}{0}\right) \\
\stackrel{L H}{=} & \lim _{x \rightarrow 4} \frac{\left(x^{2}-x-12\right)^{\prime}}{(x-4)^{\prime}} \\
= & \lim _{x \rightarrow 4} \frac{2 x-1}{1}=2(4)-1=7
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{2-x}{\sqrt{2}-\sqrt{x}}\left(\frac{0}{0}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow 2} \frac{-1}{-\frac{1}{2} x^{-1 / 2}}=\lim _{x \rightarrow 2} 2 \sqrt{x}=2 \sqrt{2}
\end{aligned}
$$

Note: L'Hopital's rule also works on limits where

$$
x \longrightarrow a^{+}, \quad x \longrightarrow a^{-}, \quad \text { or } x \longrightarrow \pm \infty
$$

(c) $\lim _{x \rightarrow \infty} \frac{x^{3}+x-7}{3 x^{3}+x+1} \quad\left(\frac{\infty}{\infty}\right)$
$\stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{3 x^{2}+1}{9 x^{2}+1} \quad\left(\frac{\infty}{\infty}\right.$ again!)

$$
\stackrel{\text { 나 }}{=} \lim _{x \rightarrow \infty} \frac{6 x}{18 x}=\frac{6}{18}=3
$$

(d)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{\ln (x)}{x}\left(\frac{\infty}{\infty}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{1 / x}{1}=\lim _{x \rightarrow \infty} \frac{1}{x}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (e) } \lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}+1}\left(\frac{\infty}{\infty}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{2 x} \prod_{(\infty / \infty)}^{L H} \lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty
\end{aligned}
$$

How would we have evaluated these limits before learning L'Hopital's rule??
(f) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}+1} \quad\left(\frac{0 "}{2} \Rightarrow\right.$ Don't use L'Hopital !!)

$$
=\frac{0}{2}=0
$$

For other indeterminate forms, try to rewrite the limit in the form " $\%$ " or " ∞ / ∞ ", then use L'Hopital.

For " $0 \cdot \infty$ ", move one function to the denominator as a reciprocal: $\quad " 0 \cdot \infty " \longrightarrow \frac{0}{1 / \infty} " \longrightarrow " \frac{0}{0} "!$

Ex: Evaluate the following limits.
(a)

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x \cdot \ln (x) \quad(0 \cdot-\infty) \\
= & \lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}\left(\frac{\infty}{\infty}\right) \\
\stackrel{L H}{=} & \lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \prod_{x \rightarrow 0^{+}} \frac{-x^{2}}{x}=\lim _{x \rightarrow 0^{+}}-x=0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x^{2} \cdot \sin \left(\frac{1}{x}\right) \quad(\infty \cdot 0) \\
& =\lim _{x \rightarrow \infty} \frac{\sin (1 / x)}{1 / x^{2}} \quad\left(\frac{0}{0}\right) \\
& \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{-1 / x^{2} \cos (1 / x)}{-2 / x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{x \cos (1 / x)}{2}=\frac{\infty \cdot 1}{2}=\infty
\end{aligned}
$$

For " $0^{0 "}$ " " $\infty^{0 "}$, or " $1^{\infty "}$, apply a logarithm to the limit to bring down the exponent!

Example: Evaluate the following limits.
(a) $\lim _{x \rightarrow 0^{+}} x^{x} \quad\left(0^{\circ}\right.$, indeterminate!)

Let $L=\lim _{x \rightarrow 0^{+}} x^{x}$. We have

$$
\begin{aligned}
\ln L=\ln \left(\lim _{x \rightarrow 0^{+}} x^{x}\right) & =\lim _{x \rightarrow 0^{+}} \ln \left(x^{x}\right) \\
& =\lim _{x \rightarrow 0^{+}} x \ln x=\overbrace{\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{1 / x}=\cdots=0}^{\text {from an earlier example }}
\end{aligned}
$$

Since $\ln L=0$, we have $L=\lim _{x \rightarrow 0^{+}} x^{x}=e^{0}=1$
(b) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \quad\left(1^{\infty}\right.$, indeterminate $)$

Let $L=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$, so

$$
\ln L=\lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{x}\right) \quad(\infty \cdot 0)
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}} \\
& \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{\frac{-1}{R^{2}} \cdot \frac{1}{1+1 / x}}{\frac{-1 / x^{2}}{}}=\frac{1}{1+0}=1
\end{aligned}
$$

Thus, $L=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e^{1}=e$
(which matches our definition of e from $\$ 1.9!$)
(c) $\lim _{x \rightarrow \pi / 2^{-}}(\sec x)^{\cos x}\left(\infty^{0}\right.$, indeterminate $)$

Let $L=\lim _{x \rightarrow \pi / 2^{-}}(\sec x)^{\cos x}$. Then

$$
\begin{aligned}
\ln L & =\lim _{x \rightarrow \pi / 2^{-}} \cos (x) \cdot \ln (\sec x)(0 \cdot \infty) \\
& =\lim _{x \rightarrow \pi / 2^{-}} \frac{\ln (\sec x)}{\sec x} \quad\left(\frac{\infty}{\infty}\right) \\
& =\lim _{x \rightarrow \pi 2^{-}} \frac{(\sec x)^{\prime} \frac{1}{\sec x}}{(\sec x)^{\prime}}=\lim _{x \rightarrow \pi / 2^{-}} \cos x=0 . \\
\therefore L & =\lim _{x \rightarrow \pi / 2^{-}}(\sec x)^{\cos x}=e^{0}=1
\end{aligned}
$$

For " $\infty-\infty$ " limits: Try putting everything over a common denominator or multiplying by a conjugate to get a "0" or " $\frac{\infty}{0}$ " limit.

Ex: $\lim _{x \rightarrow \pi / 2}(\sec x-\tan x)(\infty-\infty)$

$$
\begin{aligned}
& =\lim _{x \rightarrow \pi / 2}\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right) \\
& =\lim _{x \rightarrow \pi / 2} \frac{1-\sin x}{\cos x} \quad\left(\frac{0}{0}\right)
\end{aligned}
$$

$\stackrel{24}{=} \lim _{x \rightarrow \pi / 2} \frac{-\cos x}{-\sin x}$
$=\frac{\cos (\pi / 2)}{\sin (\pi / 2)}$

$$
=\frac{0}{1}=0
$$

