§1.8- Inverse Trig Functions

Does $f(x)=\sin (x)$ have an inverse? No! It fails the horizontal line test (badly!)

However, we can restrict $\sin (x)$ to a domain where it does pass the horizontal line test and hence has an inverse! Well restrict to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

We then define

$$
\sin ^{-1}:[-1,1] \longrightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

to be the inverse function.

Note: $\sin ^{-1}(x)$ is also denoted $\arcsin (x)$.

Examples: $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \quad$ (since $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$)

Wait... $\sin \left(\frac{5 \pi}{6}\right)=\frac{1}{2}$ too, so is it also correct to write $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{5 \pi}{6}$? No!

Remember, $\sin ^{-1}$ always outputs values in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so it "chooses" $\frac{\pi}{6}$ over $\frac{5 \pi}{6}, \frac{13 \pi}{6}$, etc...
$\sin ^{-1}(2)$ is undefined.

$$
\begin{aligned}
& \sin \left(\sin ^{-1}(1)\right)=\sin \left(\frac{\pi}{2}\right)=1 \\
& \sin ^{-1}\left(\sin \left(\frac{7 \pi}{4}\right)\right)=\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=-\frac{\pi}{4} \\
& \sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}
\end{aligned}
$$

For $\cos (x)$, we define $\cos ^{-1}:[0, \pi] \longrightarrow[-1,1]$
-also known as arccos

For $\tan (x)$, we define $\tan ^{-1}:(-\infty, \infty) \longrightarrow(-\pi / 2, \pi / 2)$
ヘ also known as arctan

You may need to evaluate expressions involving trig functions and their inverses. We can do this using triangles and trig identities.

Ex: Evaluate the following.
(a) $\sin \left(\cos ^{-1}(4 / 7)\right)$

Solution: Want to know $\sin \theta$ where $\theta=\cos ^{-1}(4 / 7)$.

$$
\text { (so } \cos \theta=4 / 7 \text {) }
$$

(b) $\sin \left(2 \cos ^{-1}(1 / 3)\right)$

Solution: Want to know $\sin 2 \theta$ where $\theta=\cos ^{-1}(1 / 3)$.

$$
\text { (so } \cos \theta=1 / 3 \text {) }
$$

(c) $\tan \left(2 \sin ^{-1}(3 / 5)\right)$

Solution: Want to know $\tan (2 \theta)$ where $\theta=\sin ^{-1}(3 / 5)$
(so $\sin \theta=3 / 5$)

$$
\sqrt{5^{2}-3^{2}}=4
$$

$$
\begin{aligned}
\tan (2 \theta) & =\frac{\sin (2 \theta)}{\cos (2 \theta)} \\
& =\frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \\
& =\frac{2(3 / 5)(4 / 5)}{(4 / 5)^{2}-(3 / 5)^{2}} \\
& =\frac{24 / 25}{7 / 25}=\frac{24}{7}
\end{aligned}
$$

