§4.2 - Increasing and Decreasing Functions

In these next few sections, we will learn how to use properties of f^{\prime} to study the behaviour of f.

In fact, last time we used the MVT to prove the following connection between f and f^{\prime} :

If $f^{\prime}(x) \geqslant 0$ for all $x \in I$, then f is increasing on I.
If $f^{\prime}(x) \leqslant 0$ for all $x \in I$, then f is decreasing on I.

Observation:
Intervals of increase/decrease are separated by points where $f^{\prime}(x)=0$ or DNE.

This gives us a way to check increasing/decreasing!

Ex: Where is f increasing? Where is f decreasing?
(a) $f(x)=x^{2}$

Solution:
[First, find any x^{\prime} s where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ DNE.] $f^{\prime}(x)=2 x$, which exists everywhere.

$$
f^{\prime}(x)=0 \Rightarrow 2 x=0 \Rightarrow x=0
$$

[Next, check the sign of f^{\prime} around these points]

$f^{\prime}-$	+
f	

$\therefore f$ increasing on $[0, \infty)$ decreasing on $(-\infty, 0]$
(Weill include the endpoint as long as it's in the domain of f.)
(b) $f(x)=x^{4}-4 x^{3}+1$

Solution: $f^{\prime}(x)=4 x^{3}-12 x^{2}$, which exists everywhere.

$$
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 4 x^{3}-12 x^{2}=0 \\
& \Rightarrow 4 x^{2}(x-3)=0 \\
& \Rightarrow x=0 \text { or } x=3
\end{aligned}
$$

$\therefore f$ is decreasing on $(-\infty, 3]$; increasing on $[3, \infty)$.
(c) $f(x)=\frac{2-x}{(x+1)^{2}}$

Solution:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{(x+1)^{2}(2-x)^{\prime}-(2-x)\left[(x+1)^{2}\right]^{\prime}}{(x+1)^{4}} \\
& =\frac{-(x+1)^{2 / 2}-2(2-x)(x+1)}{(x+1)^{4 / 3}} \\
& =\frac{-(x+1)-2(2-x)}{(x+1)^{3}}=\frac{x-5}{(x+1)^{3}}
\end{aligned}
$$

DNE when $x=-1$, $f^{\prime}(x)=0$ when $x=5$.
$\therefore f$ is increasing on $(-\infty,-1)$ and on $[5, \infty)$. f is decreasing on $(-1,5]$.
(Not included since -1 not in domain of f.)

A point $x=c$ in the domain of f is said to be a critical point (CP) of f if $f^{\prime}(c)=0$ or $f^{\prime}(c) \quad \Delta N E$.

These points will be very important when studying
maxima and minima in the next section.

Ex: $\quad f(x)=|x|$ has a CP at $x=0$ since $f^{\prime}(0)$ ONE.

Ex: We saw that $f(x)=x^{4}-4 x^{3}+1$ has critical points at $x=0$ and $x=3$, since $f^{\prime}(0)=0$ and $f^{\prime}(3)=0$.

Ex: We saw that $f(x)=\frac{2-x}{(x+1)^{2}}$ has a critical point at $x=5$.

Note: Even though $f^{\prime}(-1)$ DNE, $x=-1$ is NOT a critical point as it isn't in the domain of f.

