The Intermediate Value Theorem

Suppose
$$f$$
 is continuous for all $x \in [a, b]$, so we can
draw its graph from $(x, y) = (a, f(a))$ to $(x, y) = (b, f(b))$
without lifting our pen:

<u>Note:</u> If $f(a) < 0$ and
f(b)>0 (or vice versa)
then there must exist
Ce(a,b) with $f(c) = 0$.

More generally: if f(a) < Kand f(b) > K (or vice versa), then there exists ce(a,b)such that f(c) = K.

This leads us to the following theorem:

The Intermediate Value Theorem (IVT)

If f is continuous for all $X \in [a,b]$ and f(a) < K < f(b)or f(b) < K < f(a), then there exists at least one $c \in (a,b)$ such that f(c) = K.

Ex: Show that
$$f(x) = x^{5} + x - 1$$
 has a root (i.e.,
a solution to $f(x) = 0$) in $[0,1]$.

<u>Solution</u>: $f(x) = X^{5} + X - 1$ is a polynomial and hence

is continuous everywhere. Furthermore,

$$f(0) = 0^{5} + 0 - 1 = -1 \quad (<0) \text{ and}$$

$$f(1) = 1^{5} + 1 - 1 = 1 \quad (>0)$$

Thus, by the IVT, there exists $C \in (0,1)$ such that f(c) = 0, as desired.

Ex: Show that there is a solution to the equation

cos(x) = ax

Solution: Finding a solution to $\cos(x) = 2x$ is equivalent to finding a solution to $\cos(x) - 2x = 0$. Note that $\cos(x) - 2x$ is a difference of two continuous functions and hence is continuous. Furthermore, $\cos(0) - 2(0) = 1$ (>0) $\cos(\frac{\pi}{2}) - 2(\frac{\pi}{2}) = -\pi$ (<0) We have not been told what interval (a,b) to consider, so we need to use trial and error!

By the IVT, there exists some $C \in (0, \frac{\pi}{2})$ such that $\cos(C) - 2C = 0$, or equivalently, $\cos(C) = 2C$.

Additional Exercises

1. Prove that there exists a number c such that $a^{c} = c^{4}$. 2. Show that the equation $sin(x) = \frac{1}{x}$ has infinitely many solutions Solutions: 1. The function $f(x) = a^{x} - x^{4}$ is continuous, as it is a difference of continuous functions. Furthermore, $f(0) = 2^{\circ} - 0^{4} = 1$ (>0) while $f(a) = a^2 - a^4 = -1a$ (<0). By the IVT, there exists $C \in (0,2)$ such that f(c) = 0, or equivalently, 2° = C4.

Q. Consider the function $f(x) = \sin x - \frac{1}{x}$ which is continuous for all $x \neq 0$, and, in particular, is continuous on each interval [$ak\pi, \pm ak\pi$], k=1,a,3,...

Furthermore,

$$\int (2\kappa\pi) = \frac{\sin(2\kappa\pi)}{2\pi} - \frac{1}{2\kappa\pi} = \frac{-1}{2\kappa\pi} \quad (<0)$$

$$\int \left(\frac{\pi}{2} + 2\kappa\pi\right) = \sin\left(\frac{\pi}{2} + 2\kappa\pi\right) - \frac{1}{\frac{\pi}{2} + 2\kappa\pi}$$

$$= \sin\left(\frac{\pi}{2}\right) - \frac{1}{\frac{\pi}{2} + 2\kappa\pi}$$

$$= 1 - \left(\frac{1}{\frac{\pi}{2} + 2\kappa\pi} + 2\kappa\pi\right) - \frac{1}{(>0)}$$

By the IVT, there exists a solution C_k to f(x) = 0 in each interval $[2k\pi, \frac{\pi}{2} + 2k\pi], K=1,2,3,...$ Since none of the intervals $[ak\pi, \frac{\pi}{2} + ak\pi]$ overlaps all of the solutions C_1, C_2, C_3, \dots must be distinct; hence, $sin(x) = \frac{1}{x}$ has infinitely many solutions!