The Intermediate Value Theorem

Suppose f is continuous for all $x \in[a, b]$, so we can draw its graph from $(x, y)=(a, f(a))$ to $(x, y)=(b, f(b))$ without lifting our pen:

Note: If $f(a)<0$ and $f(b)>0$ (or vice versa) then there must exist $c \in(a, b)$ with $f(c)=0$.

More generally: if $f(a)<k$ and $f(b)>k$ (or vice versa), then there exists $c \in(a, b)$ such that $f(c)=k$.

This leads us to the following theorem:

The Intermediate Value Theorem (IVT)

If f is continuous for all $x \in[a, b]$ and $f(a)<k<f(b)$ or $f(b)<k<f(a)$, then there exists at least one $c \in(a, b)$ such that $f(c)=k$.

Ex: Show that $f(x)=x^{5}+x-1$ has a root (i.e., a solution to $f(x)=0)$ in $[0,1]$.

Solution: $f(x)=x^{5}+x-1$ is a polynomial and hence is continuous everywhere. Furthermore,

$$
\begin{aligned}
& f(0)=0^{5}+0-1=-1 \quad(<0) \text { and } \\
& f(1)=1^{5}+1-1=1 \quad(>0)
\end{aligned}
$$

Thus, by the IVT, there exists $c \in(0,1)$ such that $f(c)=0$, as desired.

Ex: Show that there is a solution to the equation

$$
\cos (x)=2 x
$$

Solution: Finding a solution to $\cos (x)=2 x$ is equivalent to finding a solution to $\cos (x)-2 x=0$.

Note that $\cos (x)-2 x$ is a difference of two continuous functions and hence is continuous.

Furthermore,

$$
\begin{aligned}
& \cos (0)-2(0)=1 \quad(>0) \\
& \cos (\pi / 2)-2\left(\frac{\pi}{2}\right)=-\pi \quad(<0)
\end{aligned}
$$

We have not been told what interval (a, b) to consider, so we need to use trial and error!

By the IVT, there exists some $c \in(0, \pi / 2)$ such that $\cos (c)-2 c=0$, or equivalently,

$$
\cos (c)=2 c
$$

Additional Exercises

1. Prove that there exists a number c such that $2^{c}=C^{4}$.
2. Show that the equation $\sin (x)=\frac{1}{x}$ has infinitely many solutions

Solutions:

1. The function $f(x)=2^{x}-x^{4}$ is continuous, as it is a difference of continuous functions.

Furthermore, $f(0)=2^{0}-0^{4}=1 \quad(>0)$
while $f(2)=2^{2}-2^{4}=-12(<0)$. By the IVT, there exists $c \in(0,2)$ such that $f(c)=0$, or equivalently, $2^{c}=c^{4}$.
2. Consider the function $f(x)=\sin x-\frac{1}{x}$ which is continuous for all $x \neq 0$, and, in particular, is continuous on each interval

$$
\left[2 k \pi, \frac{\pi}{2}+2 k \pi\right], \quad k=1,2,3, \cdots
$$

Furthermore,

$$
\begin{aligned}
& f(2 k \pi)=\underbrace{\sin (2 k \pi)}_{=0}-\frac{1}{2 k \pi}=\frac{-1}{2 k \pi} \quad(<0) \\
& \begin{aligned}
f\left(\frac{\pi}{2}+2 k \pi\right) & =\sin \left(\frac{\pi}{2}+2 k \pi\right)-\frac{1}{\frac{\pi}{2}+2 k \pi} \\
& =\sin \left(\frac{\pi}{2}\right)-\frac{1}{\frac{\pi}{2}+2 k \pi} \\
& =1-\frac{1}{\frac{\pi}{2}+2 k \pi} \quad(>0) .
\end{aligned}
\end{aligned}
$$

By the IVT, there exists a solution C_{k} to $f(x)=0$ in each interval $\left[2 k \pi, \frac{\pi}{2}+2 k \pi\right], k=1,2,3, \ldots$

Since none of the intervals $\left[2 k \pi, \frac{\pi}{2}+2 k \pi\right]$ overlap, all of the solutions $C_{1}, C_{2}, c_{3}, \ldots$ must be distinct; hence, $\sin (x)=\frac{1}{x}$ has infinitely many solutions!

