Hyperbolic Trigonometric Functions

The hyperbolic sine and cosine functions are

$$
\underset{\substack{\text { sinh" }}}{\sinh }(x)=\frac{e^{x}-e^{-x}}{2} \text { and } \cosh (x)=\frac{e^{x}+e^{-x}}{2}
$$

These are the odd and even parts of e^{x} !

These functions satisfy very similar identities to those for $\sin (x)$ and $\cos (x)$!

Ex: Show that $\sinh (2 x)=2 \sinh (x) \cosh (x)$

Solution: From the right-hand side, we have

$$
\begin{aligned}
2 \sinh (x) \cosh (x) & =\not 2\left(\frac{e^{x}-e^{-x}}{2}\right)\left(\frac{e^{x}+e^{-x}}{2}\right) \\
& =\frac{e^{x} e^{x}+e^{x} e^{-x}-e^{-x} e^{x}-e^{-x} e^{-x}}{2} \\
& =\frac{e^{2 x}-e^{-2 x}}{2}
\end{aligned}
$$

Which we recognize as $\sinh (2 x)$.

The other hyperbolic trig functions can be defined in terms of sinh and cosh as we might expect:

$$
\begin{aligned}
& \tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \operatorname{csch}(x)=\frac{1}{\sinh (x)}=\frac{2}{e^{x}-e^{-x}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sech}(x)=\frac{1}{\cosh (x)}=\frac{2}{e^{x}+e^{-x}} \\
& \operatorname{coth}(x)=\frac{\cosh (x)}{\sinh (x)}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} \quad \xrightarrow{n} x
\end{aligned}
$$

Additional Exercises:

1. Find simplified expressions for

$$
\cosh (x)+\sinh (x) \text { and } \cosh (x)-\sinh (x)
$$

2. Show that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$.

Solutions:

1. We have

$$
\cosh (x)+\sinh (x)=\frac{e^{x}+e^{-x}}{2}+\frac{e^{x}-e^{-x}}{2}=\frac{2 e^{x}}{2}=e^{x}
$$

$$
\cosh (x)-\sinh (x)=\frac{e^{x}+e^{-x}}{2}-\frac{e^{x}-e^{-x}}{2}=\frac{2 e^{-x}}{2}=e^{-x}
$$

2. To prove $\cosh ^{2}(x)-\sinh ^{2}(x)=1$, we start with the LHS:

$$
\begin{aligned}
\cosh ^{2}(x) & -\sinh ^{2}(x)=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}-\left(\frac{e^{x}-e^{-x}}{2}\right)^{2} \\
& =\frac{\left(e^{x}\right)^{2}+2 e^{x} e^{-x}+\left(e^{-x}\right)^{2}}{4}-\frac{\left(e^{x}\right)^{2}-2 e^{x} e^{-x}+\left(e^{-x}\right)^{2}}{4} \\
& =\frac{4 e^{x} e^{-x}}{4} \\
& =e^{x} \cdot \frac{1}{e^{y}}=1 .
\end{aligned}
$$

Alternatively, from 1.,

$$
\begin{aligned}
\cosh ^{2}(x)-\sinh ^{2}(x) & =[\cosh (x)+\sinh (x)][\cosh (x)-\sinh (x)] \\
& =e^{x} \cdot e^{-x}=1
\end{aligned}
$$

