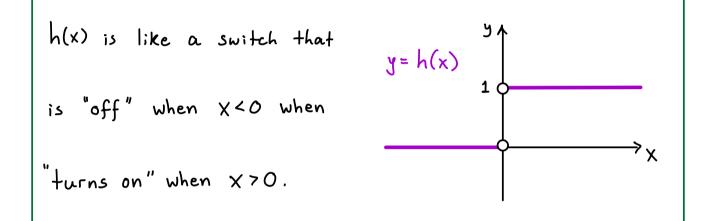
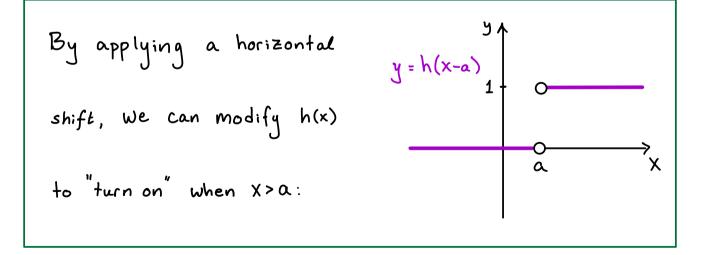
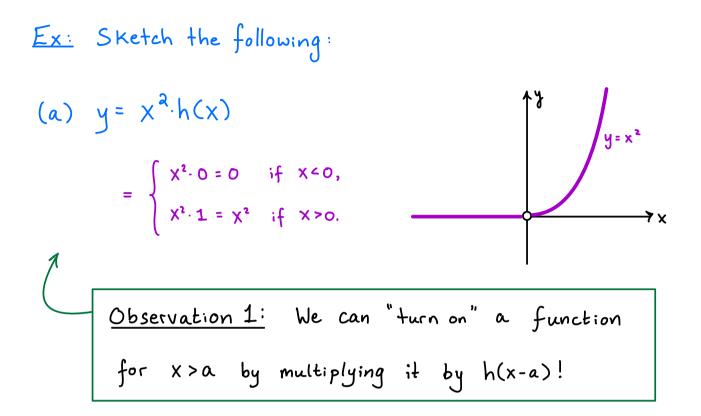
The Heaviside step function is defined by

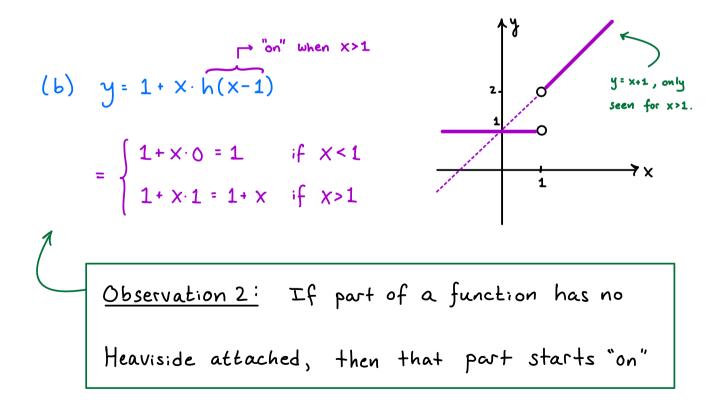
$$h(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \end{cases} \qquad \frac{N_{ote}: h(x) \text{ is not}}{\text{defined at } x=0.}$$





Let's see what else we can model with h(x)!

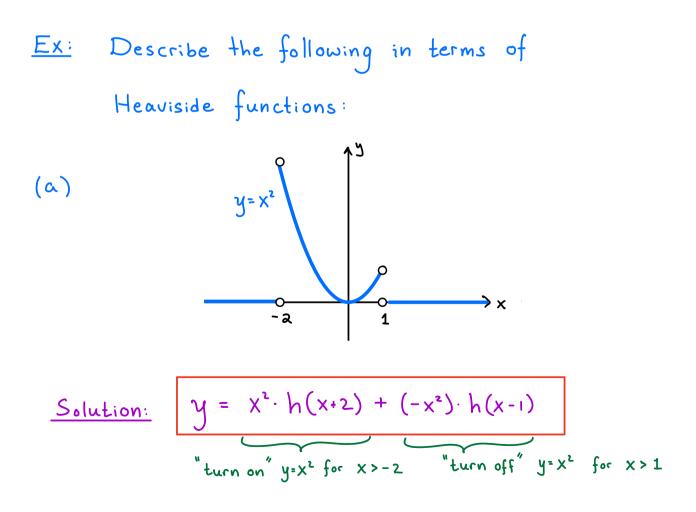


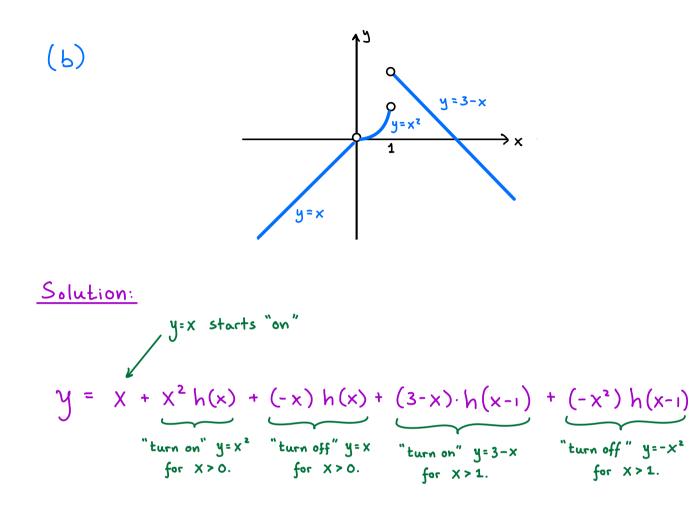


(c)
$$y = x + (-x)h(x-2)$$

$$= \begin{cases} x + (-x) \cdot 0 = x & \text{if } x < 2 \\ x + (-x) \cdot 1 = 0 & \text{if } x > 2 \end{cases}$$

$$\xrightarrow{y=x}$$





$$\Rightarrow y = \chi + (\chi^2 - \chi) \cdot h(\chi) + (3 - \chi - \chi^2) \cdot h(\chi - 1)$$

(c)
$$f(x) = \begin{cases} 2x & \text{if } x < 3, \\ 1 & \text{if } 3 < x < 4, \\ x^3 & \text{if } x > 4. \end{cases}$$

<u>Solution:</u> $y = 2x + (1 - 2x) \cdot h(x - 3) + (x^3 - 1) \cdot h(x - 4)$

As we can see, the Heaviside function gives us a compact way to describe piecewise functions. We can also write Heaviside functions in piecewise form:

<u>Ex:</u> Write the following as a piecewise function and sketch its graph:

$$f(x) = 1 - 2h(x+3) + (x+1) \cdot h(x) - (x - \frac{1}{x}) \cdot h(x-1)$$

<u>Solution</u>: Transitions occur around x = -3, 0, 1. We have $f(x) = \begin{cases} 1 & \text{if } x < -3 \\ 1-2 & \text{if } -3 < x < 0 \\ 1-2 + (x+1) & \text{if } 0 < x < 1 \\ 1-2 + (x+1) - (x - \frac{1}{x}) & \text{if } x > 1 \end{cases} = \begin{cases} 1 & \text{if } x < -3 \\ -1 & \text{if } -3 < x < 0 \\ x & \text{if } 0 < x < 1 \\ \frac{1}{x} & \text{if } 0 < x < 1 \\ \frac{1}{x} & \text{if } x > 1 \end{cases}$

Additional Exercise:

Sketch the graphs of $y = h(x^2 - 4)$ and $y = x^2 \cdot h(x^2 - 4)$. <u>Hint:</u> When is $x^2 - 4$ positive? Negative? Zero?

Solution: We have

$$X^{2}-4 > 0$$
 ; f $X < -2$ or $X > 2$
 $X^{2}-4 < 0$; f $-2 < X < 2$
 $X^{2}-4 = 0$; f $X = \pm 2$,

hence

$$h(x^{2}-4) = 1$$
 if $X < -2$ or $X > 2$
 $h(x^{2}-4) = 0$ if $-2 < X < 2$
 $h(x^{2}-4)$ is undefined if $X = \pm 2$.

