Generalized Sine Functions

Fact: Every function of the form

constants that are known to us
can be written in the form

$$
A \sin (\omega x+\varphi),
$$

constants to be determined
which we call a generalized sine function.

To determine A and φ, let's expand $\sin \left(\omega_{x}+\varphi\right)$:

$$
\begin{aligned}
B \sin (\omega x)+C \cos (\omega x) & =A \sin (\omega x+\varphi) \\
& =A[\sin (\omega x) \cos \varphi+\cos (\omega x) \sin \varphi] \\
& =(A \cos \varphi) \sin (\omega x)+(A \sin \varphi) \cos (\omega x)
\end{aligned}
$$

By comparing coefficients on both sides, we get $B=A \cos \varphi$ and $C=A \sin \varphi$. It then follows that

$$
\frac{C}{B}=\frac{A \sin \varphi}{A \cos \varphi}=\tan \varphi,
$$

hence $\varphi=\tan ^{-1}\left(\frac{C}{B}\right)$. We can then use $B=A \cos \varphi$ (or $C=A \sin \varphi$) to get A.

Summary: To write $B \sin (\omega x)+C \cos (\omega x)$ as $A \sin (\omega x+\varphi) \ldots$
(1) Calculate $\varphi=\tan ^{-1}\left(\frac{C}{B}\right)$
(2) Use $B=A \cos \varphi$ to solve for A.

Ex: Write $2 \sin (3 x)-2 \cos (3 x)$ in the form $A \sin (3 x+\varphi)$.

Solution: Here, $B=2, C=-2$. We have
(1) $\varphi=\tan ^{-1}\left(\frac{C}{B}\right)=\tan ^{-1}\left(\frac{-2}{2}\right)=\tan ^{-1}(-1)=-\frac{\pi}{4}$ and
(2) $B=A \cos \varphi \Rightarrow 2=A \cos \left(-\frac{\pi}{4}\right)=A \cdot \frac{\sqrt{2}}{2} \Rightarrow \frac{4}{\sqrt{2}}=A$

Hence, $\quad 2 \sin (3 x)-2 \cos (3 x)=\frac{4}{\sqrt{2}} \sin \left(3 x-\frac{\pi}{4}\right)$

Ex: Let $f(x)=3 \sin \left(\frac{x}{2}\right)+3 \sqrt{3} \cos \left(\frac{x}{2}\right)$.
(a) Write $f(x)$ in the form $A \sin \left(\frac{x}{2}+\varphi\right)$.
(b) Find all x such that $f(x)=6$.

Solution:
(a) Here, $B=3, C=3 \sqrt{3}$. We have
(1) $\varphi=\tan ^{-1}\left(\frac{C}{B}\right)=\tan ^{-1}\left(\frac{3 \sqrt{3}}{3}\right)=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}$, and
(2) $B=A \cos \varphi \Rightarrow 3=A \cos \left(\frac{\pi}{3}\right)=A \cdot \frac{1}{2} \Rightarrow A=6$.

Hence, $f(x)=6 \sin \left(\frac{x}{2}+\frac{\pi}{3}\right)$
(b) It will be easiest to work with the description of $f(x)$ from (a). We have

$$
\begin{aligned}
f(x)=6 & \Rightarrow 6 \sin \left(\frac{x}{2}+\frac{\pi}{3}\right)=6 \\
& \Rightarrow \sin \left(\frac{x}{2}+\frac{\pi}{3}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{x}{2}+\frac{\pi}{3}=\frac{\pi}{2}+2 k \pi, k \in \mathbb{Z} \quad \begin{array}{l}
\text { The set of } \\
\text { all integers. }
\end{array} \\
& \Rightarrow \frac{x}{2}=\left(\frac{\pi}{2}-\frac{\pi}{3}\right)+2 k \pi, k \in \mathbb{Z} \\
& \Rightarrow \frac{x}{2}=\frac{\pi}{6}+2 k \pi, \quad k \in \mathbb{Z} \\
& \Rightarrow x=\frac{\pi}{3}+4 k \pi, k \in \mathbb{Z} \\
& \left(=\frac{\pi}{3}, \frac{\pi}{3} \pm 4 \pi, \frac{\pi}{3} \pm 8 \pi, \ldots\right)
\end{aligned}
$$

