$\S 1.5$ - Functions

We say that y is a function of x (written $y=f(x)$) if there is a rule that associates exactly one y-value to every x-value.
X is the independent variable
y is the dependent variable

Ex: $\quad y=f(x)=x^{3}-x$
egg., $x=1 \Rightarrow y=1^{3}-1=0$

$$
x=-2 \Rightarrow y=(-2)^{3}-(-2)=-8+2=-6
$$

You'se probably familiar with the following "basic" functions and their graphs...

and also with the following families of functions:
(i) Polynomials (of degree n)

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

Where n is a positive integer, $a_{i} \in \mathbb{R}$ and $a_{n} \neq 0$.

The set of all real numbers, also written as $(-\infty, \infty)$.

Ex: $f(x)=2 x^{3}+x-1$ is a polynomial of degree 3.
(ii) Rational functions, which have the form $f(x)=\frac{P(x)}{Q(x)}$ where P, Q are polynomials.

Ex: $f(x)=\frac{2 x^{3}+x-1}{x^{5}+1 / 2}$ is a rational function.

Note: Not every equation we encounter will describe a function $y=f(x)$!

Ex: $x=y^{2}$
Here y isnit a function of x since most X's produce two y-values: $y= \pm \sqrt{x}$

Ex: The unit circle $x^{2}+y^{2}=1$
Same issue: $y^{2}=1-x^{2} \Rightarrow y= \pm \sqrt{1-x^{2}}$
\Rightarrow Not a function.

We can also see this graphically:

These curves fail the vertical line test and hence aren't graphs of functions $y=f(x)$.

Vertical Line Test: Any vertical line intersects the graph of a function $y=f(x)$ at most once.

You may see the function notation

$$
f: D \longrightarrow \mathbb{R}
$$

Here, D is the domain - the set of all inputs x that can be plugged into f.

Possible Domain Issues:

- Division by 0
- Square root (or $\sqrt[n]{ }$ where n is even) of something <0.
- Log of something ≤ 0.

Ex: Find the domain of $f(x)=\sqrt{\frac{x-3}{x+2}}$.
Solution: Can't divide by 0 , so $x \neq-2$.

Also need $\frac{x-3}{x+2} \geqslant 0$. We can look at the sign of the numerator $(=0$ at $x=3)$ and denominator $(=0$ when $x=-2)$.

\therefore Domain is $(-\infty,-2) \cup^{2}[3, \infty)$, or equivalently

$$
\{x \in \mathbb{R}: x<-2 \text { or } x \geqslant 3\}
$$

The range of f is the set of all outputs y that f can produce from the X 's in its domain.

Ex: $f: \mathbb{R} \longrightarrow \mathbb{R}$ given by $f(x)=x^{2}+3$ has range
$[3, \infty)$ since $y=x^{2}+3 \geqslant 0+3 \Rightarrow y \in[3, \infty)$

And every y in $[3, \infty)$ can indeed be produced!

Ex: Find the range of the function

$$
f:(1, \infty) \longrightarrow \mathbb{R}, \quad f(x)=\frac{1}{\sqrt{x-1}}
$$

Solution: Let's think about $y=\frac{1}{\sqrt{x-1}}$ for $x \in(1, \infty)$.

- When x is huge, $y=\frac{1}{\sqrt{x-1}}$ is very close to 0 (but $\neq 0$, since numerator $\neq 0$).
- When x is close to $1, \frac{1}{\sqrt{x-1}}$ blows up to ∞. \therefore Range $=(0, \infty)$.

