We say that
$$y$$
 is a function of x (written $y=f(x)$)
if there is a rule that associates exactly one
 y -value to every x -value.

X is the independent variable

y is the <u>dependent Variable</u>

$$\underline{Ex}: \quad y = f(x) = x^{3} - x$$
e.g., $x = 1 \Rightarrow y = 1^{3} - 1 = 0$

$$x = -2 \Rightarrow y = (-2)^{3} - (-2) = -8 + 2 = -6$$

You're probably familiar with the following "basic" functions and their graphs...

(i) Polynomials (of degree n)

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + a_n$$
where n is a positive integer, $a_i \in R$ and
 $a_n \neq 0$.
The set of all real numbers,
also written as $(-\infty, \infty)$.

Ex:
$$f(x) = 2x^3 + x - 1$$
 is a polynomial of degree 3.

(ii) Rational functions, which have the form

$$f(x) = \frac{P(x)}{Q(x)}$$
where P, Q are polynomials.

$$\frac{E_{X}}{E_{X}} f(x) = \frac{2x^{3} + x - 1}{x^{5} + \frac{1}{2}}$$
 is a rational function.

Note: Not every equation we encounter will describe a function y=f(x)! <u>Ex</u>: $x=y^2$ Here y isn't a function of x since most x's produce two y-values: $y=\pm \sqrt{x}$ <u>Ex</u>: The unit circle $x^2+y^2=1$ Same issue: $y^2=1-x^2 \Rightarrow y=\pm \sqrt{1-x^2}$ \Rightarrow Not a function.

We can also see this graphically:

These curves fail the vertical line test and
hence aren't graphs of functions
$$y = f(x)$$
.
Vertical Line Test: Any vertical line intersects
the graph of a function $y = f(x)$ at most once.

You may see the function notation
$$f: D \longrightarrow \mathbb{R}.$$

Here, D is the domain — the set of all inputs x that can be plugged into f.

Possible Domain Issues :

Ex: Find the domain of $f(x) = \sqrt{\frac{x-3}{x+2}}$. <u>Solution</u>: Can't divide by 0, so $x \neq -2$. Also need $\frac{x-3}{x+2} \ge 0$. We can look at the sign of the numerator (=0 at x=3) and denominator (=0 when x = -2).

The range of f is the set of all outputs y that f can produce from the X's in its domain.

Ex:
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 given by $f(x) = x^2 + 3$ has range
 $[3, \infty)$ since $y = x^2 + 3 \ge 0 + 3 \implies y \in [3, \infty)$
And every y in $[3, \infty)$
can indeed be produced!
 x
Ex: Find the range of the function
 $f: (1, \infty) \longrightarrow \mathbb{R}$, $f(x) = \frac{1}{\sqrt{x-1}}$.
Solution: Let's think about $y = \frac{1}{\sqrt{x-1}}$ for $x \in (1, \infty)$.
• When x is huge, $y = \frac{1}{\sqrt{x-1}}$ is very close to 0
(but $\neq 0$, since numerator $\neq 0$).
• When x is close to 1, $\frac{1}{\sqrt{x-1}}$ blows up to ∞ .
 \therefore Range = $(0, \infty)$.