§6.5 - The Fundamental Theorem of Calculus - Part II

From Part I of the FTC, we know how useful antiderivatives are for evaluating $\int_{a}^{b} f(x) d x$. But does every continuous function even have an antiderivative?

Yes! This is Part II of the FTC!

The Fundamental Theorem of Calculus (FTC) - Part II

If f is continuous on $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is differentiable and $\frac{d}{d x} F(x)=f(x)$. That is, $F(x)$ is an antiderivative of $f(x)$.

Okay... Let's unpack this statement carefully...

Given X, the function $F(x)=\int_{a}^{x} f(t) d t$ outputs the area under $y=f(t)$ from $t=a$ to $t=x$.

Moving from x to $x+h$, the change in area $F(x+h)-F(x)$ is approximately $f(x) \cdot h$, hence $\frac{F(x+h)-F(x)}{h} \approx f(x)$.

When $h \rightarrow 0$, the approximation becomes exact:

$$
\frac{d}{d x} F(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=f(x)
$$

Takeaway: FTC Part II tells us that

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

a

Ex: What is $\frac{d}{d x} \int_{0}^{x} t^{2} d t$?
Solution: By the FTC part II, $\frac{d}{d x} \int_{1}^{x} t^{2} d t=x^{2}$
Alternatively, we could have first evaluated the integral and then differentiated:

$$
\frac{d}{d x} \int_{1}^{x} t^{2} d t=\frac{d}{d x}\left[\frac{t^{3}}{3}\right]_{1}^{x}=\frac{d}{d x}\left[\frac{x^{3}}{3}-\frac{1}{3}\right]=x^{2}
$$

The advantage to using the FTC is that we don't need to first evaluate the integral - or even know how to!

Ex: What is $\frac{d}{d x} \int_{2}^{x} \tan \left(t^{2} \cdot e^{t}\right) d t$?
No clue how to integrate
Solution: By FTC II, this... but that's ok!

$$
\frac{d}{d x} \int_{2}^{x} \tan \left(t^{2} e^{t}\right) d t=\tan \left(x^{2} e^{x}\right)
$$

Ex: What is $\frac{d}{d x} \int_{0}^{8 x+1} \sqrt{1+t^{3}} d t$?

It turns out that

$$
\frac{d}{d x} \int_{a}^{h(x)} f(t) d t=f(h(x)) \cdot h^{\prime}(x)
$$

Why? Well... if $F(x)=\int_{a}^{x} f(t) d t$, then $F^{\prime}(x)=f(x)$ by FTC II, hence

$$
\begin{aligned}
\frac{d}{d x} \int_{a}^{h(x)} f(t) d t & =\frac{d}{d x} F(h(x)) \\
& =F^{\prime}(h(x)) \cdot h^{\prime}(x) \\
& =f(h(x)) \cdot h^{\prime}(x)
\end{aligned}
$$

as claimed. Now let's revisit our example!

Solution:

$$
\begin{aligned}
\frac{d}{d x} \int_{0}^{8 x+1} \sqrt{1+t^{3}} d t & =\sqrt{1+(8 x+1)^{3}} \cdot(8 x+1)^{\prime} \\
& =\sqrt{1+(8 x+1)^{3}} \cdot 8
\end{aligned}
$$

A function, $h(x)$!
Ex: What is $\frac{d}{d x} \int_{2 x}^{\sin x} e^{t^{2}} d t$?

In general

$$
\begin{aligned}
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t & =\frac{d}{d x}\left(\int_{g(x)}^{0} f(t) d t+\int_{0}^{h(x)} f(t) d t\right) \\
& =\frac{d}{d x}\left(\int_{0}^{h(x)} f(t) d t-\int_{0}^{g(x)} f(t) d t\right) \\
& =f(h(x)) \cdot h^{\prime}(x)-f(g(x)) \cdot g^{\prime}(x)
\end{aligned}
$$

This is the most general version of FTCII:

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(t) d t=f(h(x)) \cdot h^{\prime}(x)-f(g(x)) \cdot g^{\prime}(x)
$$

Solution:

$$
\begin{aligned}
\frac{d}{d x} \int_{2 x}^{\sin x} e^{t^{2}} d t & =e^{(\sin x)^{2}} \cdot(\sin x)^{\prime}-e^{(2 x)^{2}} \cdot(2 x)^{\prime} \\
& =e^{\sin ^{2} x} \cdot \cos x-e^{4 x^{2}} \cdot 2
\end{aligned}
$$

Note: While FTC II tells us that every continuous function has an antiderivative, it is not always possible to express the antiderivative in terms of elementary (ie., familiar) functions.
e.g. $F(x)=\int_{0}^{x} e^{t^{2}} d t$ is an antiderivative of $e^{x^{2}}$, but there is no way to express $F(x)$ in terms of polynomials, roots, trig functions, exponentials, logs, etc.!

