Derivatives of Logarithmic \& Exponential Functions

Recall: e is the unique base such that $y=e^{x}$ has slope 1 at $x=0$. That is, $f(x)=e^{x}$ has derivative $f^{\prime}(0)=1$. Thus,

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{0+h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

We can use this limit to find $\left(e^{x}\right)^{\prime}$!

$$
\begin{gathered}
\left(e^{x}\right)^{\prime}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} e^{x}\left(\frac{e^{h}-1}{h}\right)^{1}=e^{x} \\
\therefore\left(e^{x}\right)^{\prime}=e^{x}
\end{gathered}
$$

What about the derivative of a^{x} ?
Trick: $a^{x}=\left(e^{\ln a}\right)^{x}=e^{x \ln a}$.

We then have

$$
\begin{gathered}
\left(a^{x}\right)^{\prime}=\left(e^{x \ln a}\right)^{\prime}=\underbrace{e^{x \ln a}}_{=a^{x}} \cdot(\underbrace{x \ln a}_{=\ln a})^{\prime}=a^{x} \ln (a) . \\
\therefore\left(a^{x}\right)^{\prime}=a^{x} \cdot \ln a
\end{gathered}
$$

To find the derivative of $y=\log _{a}(x)$, we can use implicit differentiation:

$$
\begin{aligned}
y=\log _{a} x & \Rightarrow a^{y}=x \\
& \Rightarrow a^{y} \cdot \ln (a) \cdot y^{\prime}=1 \\
& \Rightarrow y^{\prime}=\frac{1}{a^{y} \cdot \ln (a)}=\frac{1}{x \cdot \ln (a)} \quad\left(\text { sinclicit } a^{y}=x\right) \\
& \therefore\left(\log _{a} x\right)^{\prime}=\frac{1}{x \cdot \ln (a)}
\end{aligned}
$$

When $a=e$, we get

$$
(\ln x)^{\prime}=\frac{1}{x}
$$

Ex: Find the following derivatives.
(a) $y=\frac{\ln x}{x}$
(b) $y=2^{e^{x} \cdot \tan (x)}$

Solution:
(a)

$$
\begin{aligned}
y^{\prime} & =\frac{x(\ln x)^{\prime}-\ln x(x)^{\prime}}{x^{2}} \\
& =\frac{x\left(\frac{1}{x}\right)-\ln x}{x^{2}}=\frac{1-\ln x}{x^{2}}
\end{aligned}
$$

(b) $y^{\prime}=2^{e^{x} \tan x} \cdot \ln (2) \cdot\left(e^{x} \tan x\right)^{\prime}$

$$
=2^{e^{x} \tan x} \cdot \ln (2)\left(e^{x} \tan x+e^{x} \sec ^{2} x\right)
$$

when covering logarithmic differentiation, weill often encounter functions of the form $y=\ln (f(x))$. From the chain rule, we have

$$
[\ln (f(x))]^{\prime}=\frac{f^{\prime}(x)}{f(x)}
$$

