§1.9-Exponential \& Logarithmic Functions

The exponential function $y=a^{x}$ obeys our usual $\tau_{a>0, a \neq 1}$
exponent laws:

$$
\begin{aligned}
& a^{b+c}=a^{b} a^{c} \\
& a^{b-c}=\frac{a^{b}}{a^{c}} \\
& \left(a^{b}\right)^{c}=a^{b c}
\end{aligned}
$$

Its inverse is the function $y=\log _{a}(x)$.

Ex: $\quad \log _{10}(1000)=3$ since $10^{3}=1000$.

$$
\log _{2}(1 / 4)=-2 \text { since } 2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \text {. }
$$

This function satisfies the following logarithm laws:

$$
\begin{aligned}
& \log _{a}(b c)=\log _{a}(b)+\log _{a}(c) \\
& \log _{a}\left(\frac{b}{c}\right)=\log _{a}(b)-\log _{a}(c) \\
& \log _{a}\left(b^{c}\right)=c \cdot \log _{a}(b)
\end{aligned}
$$

Ex: Solve the following.
(a) $\log _{6}(3 x)=2$

Solution: $\log _{6}(3 x)=2 \Rightarrow 6^{2}=3 x$

$$
\Rightarrow \quad x=36 / 3=12
$$

(b) $\log _{7}(x)+\log _{7}(x+6)=1$

Solution: $\log _{7}(x)+\log _{7}(x+6)=1$

$$
\begin{aligned}
& \Rightarrow \log _{7}(x(x+6))=1 \\
& \Rightarrow 7^{1}=x(x+6)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x^{2}+6 x-7=0 \\
& \Rightarrow(x+7)(x-1)=0 \\
& \Rightarrow x=-7 \text { or } x=1
\end{aligned}
$$

$\therefore x=1$ is the only solution

Since a^{x} and $\log _{a}(x)$ are inverse, it follows that

$$
a^{\log _{a}(x)}=x, \quad \log _{a}\left(a^{x}\right)=x
$$

Ex: Simplify $5^{3 \log _{5}(x)}$.
Solution: $5^{3 \log _{5}(x)}=5^{\log _{5}\left(x^{3}\right)}=x^{3}$

Special Base: $e \approx 2.71828 \ldots$ (Euler's Constant)
$a=e$ is the unique number such that the graph of $y=a^{x}$ has slope 1 at $x=0$.

Alternatively, e can be defined by the following famous limit:

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

We call $\log _{e}(x)$ the natural logarithm and write

$$
\ln (x)=\log _{e}(x)
$$

Ex: Solve $\ln (1+\ln (x))=3$
Solution:

$$
\begin{aligned}
\ln (1+\ln (x))=3 & \Rightarrow e^{\ln (1+\ln (x))}=e^{3} \\
& \Rightarrow 1+\ln (x)=e^{3} \\
& \Rightarrow \ln (x)=e^{3}-1 \\
& \Rightarrow e^{\ln (x)}=e^{\left(e^{3}-1\right)} \\
& \Rightarrow x=e^{\left(e^{3}-1\right)}
\end{aligned}
$$

