The exponential function $y = a^{\times}$ obeys our usual $a > 0, a \neq 1$

exponent laws :

Its inverse is the function $y = log_a(x)$. $y_1 \qquad y = log_a(x)$ Domain = (0, \omega) $Range = (-\omega, \omega)$

$$y = a^{\times} \iff log_{a}(y) = \times$$

Ex:
$$\log_{10}(1000) = 3$$
 since $10^3 = 1000$.
 $\log_2(\frac{1}{4}) = -2$ since $2^{-2} = \frac{1}{2^2} = \frac{1}{4}$

 $\frac{E_{X}}{Solve} \text{ the following.}$ (a) $\log_{6}(3\times) = 2$ $\frac{Solution}{\log_{6}(3\times)} = 2 \implies 6^{2} = 3\times$ $\Rightarrow \times = 36/3 = 12$

(b)
$$\log_7(x) + \log_7(x+6) = 1$$

Solution: $\log_7(x) + \log_7(x+6) = 1$
 $\Rightarrow \log_7(x(x+6)) = 1$
 $\Rightarrow 7^1 = x(x+6)$

$$\Rightarrow X^{2} + 6x - 7 = 0$$

$$\Rightarrow (x+7)(x-1) = 0.$$

$$\Rightarrow X = -7 \text{ or } x = 1$$

$$\therefore X = 1 \text{ is the only solution}$$

$$\begin{bmatrix} \log(x) & \log_{7}(x+6) & \text{are} \\ \log(x) & & \log_{7}(x+6) & \text{are} \\ \log(x) & & \log_{7}(x+6) & \text{are} \\ \text{order of the only solution} \end{bmatrix}$$

Since
$$a^{x}$$
 and $log_{a}(x)$ are inverse, it follows that
 $a^{log_{a}(x)} = x$, $log_{a}(a^{x}) = x$

 $\frac{EX: Simplify 5}{Solution}: 5^{3\log_5(x)} = 5^{\log_5(x^3)} = x^3$

$$a = e$$
 is the unique number such that $y = y = e^{x}$
the graph of $y = a^{x}$ has slope 1
at $x = 0$.

Alternatively, e can be defined by the following
famous limit:
$$e = \lim_{n \to \infty} \left(\left| + \frac{1}{n} \right|^n \right)$$

We call $log_e(x)$ the natural logarithm and write $ln(x) = log_e(x)$ y = ln(x) y = ln(x) y = ln(x) y = ln(x) y = ln(x)

 $\underbrace{E_{X}:} \quad Solve \quad ln\left(1+ln(x)\right) = 3$ $\underbrace{Solution:} \quad ln\left(1+ln(x)\right) = 3 \quad \Rightarrow \quad e^{ln\left(1+ln(x)\right)} = e^{3}$ $\Rightarrow \quad 1+ln(x) = e^{3}$ $\Rightarrow \quad ln(x) = e^{3} - 1$ $\Rightarrow \quad e^{ln(x)} = e^{(e^{3} - 1)}$ $\Rightarrow \quad x = e^{(e^{3} - 1)}$