Even and Odd Functions

A function $y=f(x)$ is said to be

- even if $f(-x)=f(x)$ for all x in its domain
- odd if $f(-x)=-f(x)$ for all x in its domain.

Ex: $f(x)=\frac{x^{3}}{2}$

$$
f(-x)=\frac{(-x)^{3}}{2}=\frac{(-1)^{3} x^{3}}{2}=\frac{-x^{3}}{2}=-f(x)
$$

$\therefore f(x)$ is odd.
Ex: $g(x)=1+\frac{1}{x^{2}}$
$g(-x)=1+\frac{1}{(-x)^{2}}=1+\frac{1}{x^{2}}=g(x) \quad \therefore g$ is even.

Ex: $\quad h(x)=x^{4}+2 x$

$$
\begin{aligned}
& h(x)=x+2 x \\
& h(-x)=(-x)^{4}+2(-x)=x^{4}-2 x
\end{aligned}
$$

\therefore Neither even nor odd!

Even functions are symmetric when reflected over the y-axis...

While odd functions are symmetric when reflected over both axes.

Similar to how a complex number can be broken up into real and imaginary parts, a function $f(x)$ can be broken up into even and odd parts!

$$
\begin{array}{cc}
f_{e}(x)=\frac{f(x)+f(-x)}{2}, & f_{0}(x)=\frac{f(x)-f(-x)}{2} \\
\{ & \{ \\
\text { The even part of } f . & \\
\text { The odd part of } f .
\end{array}
$$

Ex: For $f(x)=x^{4}+2 x$

$$
\begin{aligned}
& f_{e}(x)=\frac{f(x)+f(-x)}{2}=\frac{\left(x^{4}+2 x\right)+\left((-x)^{4}+2(-x)\right)}{2} \\
&=\frac{\left(x^{4}+2 x\right)+\left(x^{4}-2 x\right)}{2}=x^{4} \\
& \text { Coven! }^{2} \\
& f_{0}(x)=\frac{f(x)-f(-x)}{2}=\frac{\left(x^{4}+2 x\right)-\left((-x)^{4}+2(-x)\right)}{2} \\
&=\frac{x^{4}+2 x-\left(x^{4}-2 x\right)}{2}=\sum_{\text {(odd! }}^{2 x}
\end{aligned}
$$

Properties of f_{e} and f_{0} :
(i) $f e$ is an even function
(ii) f_{0} is an odd function
(iii) $f_{e}(x)+f_{0}(x)=f(x)$

Proof: (i) To see that $f e$ is even, note that

$$
f_{e}(-x)=\frac{f(-x)+f(-(-x))}{2}=\frac{f(-x)+f(x)}{2}=f_{e}(x) .
$$

(ii) To see that $f_{0}(x)$ is odd, note that

$$
\begin{aligned}
f_{0}(-x) & =\frac{f(-x)-f(-(-x))}{2} \\
& =\frac{f(-x)-f(x)}{2} \\
& =\frac{-[f(x)-f(-x)]}{2}=-f_{0}(x) .
\end{aligned}
$$

(iii) Finally,

$$
\begin{aligned}
f_{e}(x)+f_{0}(x) & =\left[\frac{f(x)+f(-x)}{2}\right]+\left[\frac{f(x)-f(-x)}{2}\right] \\
& =\frac{f(x)+f(x)}{2}=f(x),
\end{aligned}
$$

as claimed.
"End of proof."

Ex: Suppose f is an even function. Show that

$$
f_{e}(x)=f(x) \text { and } f_{0}(x)=0
$$

Solution: We have

$$
\begin{aligned}
&=\quad \text { (since } f \text { is even) } \\
& f_{e}(x)=\frac{f(x)+f(-x)}{2}=\frac{f(x)+f(x)}{2}=\frac{2 f(x)}{2}=f(x) \\
&=\quad \text { (again, since } f \text { is even) } \\
& f_{0}(x)=\frac{f(x)-f(-x)}{2}=\frac{f(x)-f(x)}{2}=\frac{0}{2}=0
\end{aligned}
$$

A similar statement as above is true for odd functions - try proving it as an exercise!

Additional Exercises:

1. Determine $f_{e}(x)$ and $f_{0}(x)$ for $f(x)=\frac{1}{x+1}$.
2. Is there a function that is both even and odd? Explain.

Solutions:

1. With $f(x)=\frac{1}{1+x}$, we have

$$
\begin{aligned}
f_{e}(x)=\frac{f(x)+f(-x)}{2} & =\frac{\frac{1}{1+x}+\frac{1}{1-x}}{2} \\
& =\frac{\frac{(1-x)+(1+x)}{(1+x)(1-x)}}{2} \\
& =\frac{2}{x\left(1-x^{2}\right)}=\frac{1}{1-x^{2}} \\
f_{0}(x)=\frac{f(x)-f(-x)}{2} & =\frac{\frac{1}{1+x}-\frac{1}{1-x}}{2} \\
& =\frac{\frac{(x-x)-(1+x)}{(1+x)(1-x)}}{2}
\end{aligned}
$$

$$
=\frac{-\not \mathscr{}(x}{\mathscr{Z}\left(1-x^{2}\right)}=\frac{-x}{1-x^{2}}
$$

2. For f to be both even and odd, we would need

$$
\begin{align*}
f(-x) & =f(x) \tag{1}\\
\text { and } \quad f(-x) & =-f(x) \tag{2}
\end{align*}
$$

for all x in the domain. Hence, subtracting (2) from (1) we get $0=2 f(x)$, or equivalently, $f(x)=0$ for all x in the domain. Therefore, the only function that is both even and odd is the constant function, $f(x)=0$.

