§3.1 - The Derivative

The average rate of change of $f(x)$ from $x=a$ to $x=b$ is $\frac{f(b)-f(a)}{b-a}$, the slope of the secant line through $(a, f(a))$ and $(b, f(b))$.

$$
\begin{aligned}
\text { Slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{f(b)-f(a)}{b-a} \\
& =\frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

Considering the limit as $h \longrightarrow 0$, we obtain the instantaneous rate of change at $x=a$:

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

also known as the derivative of f at $x=a$.

Note: One may equivalently define

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Note that as $h \rightarrow 0 \ldots$

... our secant line becomes a tangent line!

The tangent line to f at $x=a$ is the line with slope $f^{\prime}(a)$ and passing through $(a, f(a))$.

Ex: If $f(x)=x^{2}$, what is $f^{\prime}(2)$?

Solution: Here, $a=2$. We have

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(44+4 h+h^{2}\right)-\not /}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(4+h)}{\not K} \\
& =\lim _{h \rightarrow 0} 4+h^{0}=4
\end{aligned}
$$

Rather than repeating this process for various values of a, we can instead find the derivative function

$$
\begin{aligned}
& f_{\uparrow}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \text { Also written } \frac{d y}{d x} \text { or } \frac{d f}{d x}
\end{aligned}
$$

and choose the input later.

Ex: For $f(x)=x^{2}$, the derivative function is

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}\right)-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{\not h}=2 x+0=2 x
\end{aligned}
$$

We may now quickly compute, for example,

$$
f^{\prime}(2)=2(2)=4, \quad f^{\prime}(5)=2(5)=10, \quad \text { etc. }
$$

Ex: Find $f^{\prime}(x)$ if $f(x)=\sqrt{x}$, then find $f^{\prime}(4)$.

Solution:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\underbrace{\sqrt{x+h}}_{\rightarrow \sqrt{x}}+\sqrt{x})}=\frac{1}{\sqrt{x}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Thus, $f^{\prime}(4)=\frac{1}{2 \sqrt{4}}=\frac{1}{4}$.

Note: We have now seen that

$$
\left(x^{2}\right)^{\prime}=2 x \text { and }\left(x^{1 / 2}\right)^{\prime}=\frac{1}{2} x^{-1 / 2}
$$

In general, we have...
The Power Rule: any real number
If $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$.

Ex: For $f(x)=x^{4 / 3}$, we have

$$
f^{\prime}(x)=\frac{4}{3} x^{4 / 3-1}=\frac{4}{3} x^{1 / 3}
$$

Ex: Let $f(x)=|x|$. What is $f^{\prime}(0)$?

Solution: We have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
$$

Looking at the one-sided limits, we get

$$
\left.\begin{array}{l}
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}} \frac{-\not h}{\not K}=-1 \\
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{\not h}{\not K}=1
\end{array}\right\} \text { Not }
$$

$\therefore f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist.

$f^{\prime}(a)$ fails to exist at sharp corners (cusps)

$f^{\prime}(a)$ also fails to exist at points where f is discontinuous

If $f^{\prime}(a)$ exists, we say f is differentiable at $x=a$.

The above examples tell us two things:

1. If f is differentiable, f must be continuous.
2. Not every continuous function is differentiable.
