§4.5 -Curve Sketching with Calculus

We've studied the function $f(x)=x^{4}-4 x^{3}+1$ in

Several examples and now have enough information to sketch its graph!

From the table, we see that f has a local min at $(3, f(3))=(3,-26)$ and inflection points at $(0, f(0))=(0,1)$ and $(2, f(2))=(2,-15)$. We plot these points and connect them using the "Shape" row.

General Strategy: To sketch $y=f(x)$, find
(1) domain of f
(2) Vertical asymptotes (any infinite limits?) horizontal asymptotes (check limits as $x \rightarrow \pm \infty$)
(3) Points where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ ONE
(4) Points where $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ $D N E$.
(5) Test all intervals for increase/decrease and

Concavity. List local extrema and inflection points.
(6) Plot all interesting points and connect them using the following chart:

Ex: Sketch the graph of $f(x)=e^{-x^{2}}$
Solution: (1) Domain $=\mathbb{R}$
(2) Vertical asymptotes? None, since domain $=\mathbb{R}$.

Horizontal asymptotes?

$$
\lim _{x \rightarrow \infty} e^{-x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{e^{x^{2}}}=0 \Rightarrow H A \text { at } y=0 \text {. }
$$

Similarly, $\lim _{x \rightarrow-\infty} e^{-x^{2}}=0$.
(3) $f^{\prime}(x)=0$ or DNE?

$$
f^{\prime}(x)=\underbrace{-2 x e^{-x^{2}}}_{\text {exists everywhere }}=0 \quad \Rightarrow \quad x=0 \quad \text { (C.P.) }
$$

(4) $f^{\prime \prime}(x)=0$ or DNE ?

$$
\begin{aligned}
& f^{\prime \prime}(x)=-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}}=-\underbrace{-2\left(1-2 x^{2}\right) e^{-x^{2}}}_{\text {exists everywhere }} \\
& f^{\prime \prime}(x)=0 \Rightarrow 1-2 x^{2}=0 \\
& \Rightarrow x^{2}=1 / 2 \Rightarrow x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

(5)

		$-1 / \sqrt{2}$	0	
$f^{\prime \prime}$	+	-	-	+
f^{\prime}	+	+	-	-
f	$\vee \nearrow$	\cap	$\cap \searrow \searrow$	$\cup \searrow$
Shape				

Local max at $(0, f(0))=(0,1)$.
Inflection points at $\left(-\frac{1}{\sqrt{2}}, e^{-1 / 2}\right)$ and $\left(\frac{1}{\sqrt{2}}, e^{-1 / 2}\right)$
(6) The sketch

Ex: Sketch the graph of $f(x)=\frac{x^{2}}{4-x^{2}}$ given that $f^{\prime}(x)=\frac{8 x}{\left(4-x^{2}\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{8\left(3 x^{2}+4\right)}{\left(4-x^{2}\right)^{3}}$.

Solution: (1) $f(x)=\frac{x^{2}}{4-x^{2}}$ is undefined when $4-x^{2}=0$, hence when $x= \pm 2$. Thus, domain $=\{x \in \mathbb{R}: x \neq \pm 2\}$
(2) Vertical Asymptotes?
$f(x)=\frac{x^{2}}{4-x^{2}}=\frac{x^{2}}{(2-x)(2+x)}$ blows up to $\pm \infty$ as $x \longrightarrow \pm 2$.
$\Rightarrow V A_{s}$ at $x=-2$ \& $x=2$.

Horizontal Asymptotes?

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{2}}{4-x^{2}}=\lim _{x \rightarrow \pm \infty} \frac{x^{2}}{x^{2}\left(\frac{4}{x^{2}-1}\right)}=\frac{1}{0-1}=-1
$$

$\Rightarrow H A$ at $y=-1$.
(3) $f^{\prime}(x)=0$ or DNE?

$$
f^{\prime}(x)=\frac{8 x}{\left(4-x^{2}\right)^{2}} \xrightarrow[\Delta N E]{=0} \text { when } x=0 \text { (critical } p t \text {) }
$$

(4) $f^{\prime \prime}(x)=0$ or $D N E$?

$$
f^{\prime \prime}(x)=\frac{8\left(3 x^{2}+4\right)}{\left(4-x^{2}\right)^{3}} \xlongequal[\text { ONE }]{ }=0 \text { Never, numerator }>0 \text {. }
$$

(5)

		-2	0	2	
$f^{\prime \prime}$	-	+	+	-	
f^{\prime}	-	-	+	+	
f	$\cap \searrow$	$\cup \searrow$	$\vee \nearrow$	$\cap \nearrow$	
Shape					

From the table, there is a local min at $(0,0)$;
no inflection points (since $f(\pm 2)$ are undefined)
(6) The SKetch

