We've studied the function $f(x) = x^4 - 4x^3 + 1$ in

Several examples and now have enough information

to sketch its graph!

From the table, we see that f has a local min at (3, f(3)) = (3, -26) and inflection points at (0, f(0)) = (0, 1) and (2, f(2)) = (2, -15). We plot these points and connect them using the "shape" row.

$$\underline{Ex}: \text{ Sketch the graph of } f(x) = e^{-x^2}$$

$$\underline{Solution:} \quad (1) \text{ Domain = } \mathbb{R}$$

$$(2) \quad \underline{Vertical \ asymptotes ?} \quad None, \text{ since domain = } \mathbb{R}.$$

$$\underline{Horizontal \ asymptotes ?} \quad Harrishow = 0 \implies HArrishow = 0.$$

$$\underline{Similarly}, \quad \underline{\lim_{X \to \infty} e^{-x^2}} = 0.$$

(3)
$$f'(x) = 0$$
 or DNE ?
 $f'(x) = -2xe^{-x^2} = 0 \implies X = 0$ (C.P.)
exists everywhere

$$(4) \quad \underline{f''(x) = 0 \quad \text{or } DNE?}$$

$$f''(x) = -\lambda e^{-x^{2}} + 4x^{2}e^{-x^{2}} = -2(1-\lambda x^{2})e^{-x^{2}}$$

$$exists \quad everywhere$$

$$f''(x) = 0 \quad \Rightarrow \quad 1-\lambda x^{2} = 0$$

$$\Rightarrow \quad x^{2} = \frac{1}{2} \quad \Rightarrow \quad x = \pm \frac{1}{\sqrt{2}}$$

Local max at (0, f(0)) = (0, 1).

Inflection points at $\left(-\frac{1}{\sqrt{2}}, e^{-\frac{1}{2}}\right)$ and $\left(\frac{1}{\sqrt{2}}, e^{-\frac{1}{2}}\right)$

Ex: Sketch the graph of
$$f(x) = \frac{x^2}{y - x^2}$$
 given that
 $f'(x) = \frac{8x}{(4 - x^2)^2}$ and $f''(x) = \frac{8(3x^2 + 4)}{(4 - x^2)^3}$.

Solution: (1)
$$f(x) = \frac{\chi^2}{4 - \chi^2}$$
 is undefined when $4 - \chi^2 = 0$,
hence when $\chi = \pm 2$. Thus, domain = $\{\chi \in \mathbb{R} : \chi \neq \pm 2\}$

(z) Vertical Asymptotes?

$$f(x) = \frac{x^{2}}{4 - x^{2}} = \frac{x^{2}}{(z - x)^{2 + x}}$$
blows up to $\pm \infty$ as $X \longrightarrow \pm 2$.
 $\Rightarrow VAs$ at $X = -2$ f $X = 2$.

Horizontal Asymptotes?

$$\lim_{x \to \pm \infty} \frac{x^{2}}{4-x^{2}} = \lim_{x \to \pm \infty} \frac{x^{2}}{x^{2}(\frac{y}{x^{2}}-1)} = \frac{1}{0-1} = -1.$$

$$\Rightarrow HA \text{ at } y = -1.$$

(3)
$$f'(x) = 0$$
 or DNE?
 $f'(x) = \frac{8x}{(4-x^2)^2} \xrightarrow{=0} \text{ when } x = 0 \text{ (critical pt)}$
 $D_{NE} \xrightarrow{} \text{ when } x = \pm 2$

From the table, there is a local min at (0,0); no inflection points (since $f(\pm 2)$ are undefined)

