§2.4 -Continuity

Idea: $f(x)$ is continuous at $x=a$ if we can draw the graph of $f(x)$ around $x=a$ without lifting our pen.

Formally, f is continuous at $x=a$ if
(i) $\lim _{x \rightarrow a} f(x)$ exists;
(ii) f is defined at $x=a$; and
(iii) $\lim _{x \rightarrow a} f(x)=f(a)$

Most functions we have encountered in MATH 116
are continuous at every x in their domain. These
include - polynomials and rational functions

- trig and inverse trig functions
- exponential and log functions
- hyperbolic trig functions
- the absolute value function

Ex: At which points is $f(x)=\frac{x^{2}-1}{x-1}$ continuous?
Solution: $f(x)=\frac{x^{2}-1}{x-1}$ is a rational function and hence it is continuous at all points in its domain: $\{x \in \mathbb{R}: x \neq 1\}$. It is not continuous at $x=1$ since $f(1)$ is not defined.

For piecewise functions, discontinuities can sometimes be found where the function "changes pieces".

Ex: Find all constants $a \& b$ that make

$$
f(x)=\left\{\begin{array}{cl}
\frac{b\left(x^{2}-4\right)}{x-2} & \text { if } x<2 \\
4 & \text { if } x=2 \\
a x+3 b & \text { if } x>2
\end{array}\right.
$$

continuous everywhere.

Solution: Note that f will be continuous at all $x \neq 2$ since $\frac{b\left(x^{2}-4\right)}{x-2}$ is continuous for all $x<2$ and $a x+3 b$ is continuous for all $x>2$. To make f continuous at $x=2$, we need

$$
\lim _{x \rightarrow 2} f(x)=f(2)=4
$$

or equivalently,

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=4
$$

We have

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{b\left(x^{2}-4\right)}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{b(x-2)(x+2)}{x-2^{2}}=4 b
$$

Hence,

$$
\lim _{x \rightarrow 2^{-}} f(x)=4 \Rightarrow 4 b=4 \Rightarrow b=1
$$

Also,

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} a x+3 b=2 a+3 b^{b=1!}=2 a+3
$$

Hence,

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=4 \Rightarrow 2 a+3=4 \\
& \Rightarrow 2 a=1 \\
& \Rightarrow a=1 / 2 \\
& \therefore a=\frac{1}{2} \& b=1 \text { will work. }
\end{aligned}
$$

Important fact: limits can be brought inside continuous functions! That is...

If $\lim _{x \rightarrow a} g(x)=L$ and f is continuous at L, then $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(L)$.

Ex: What is $\lim _{x \rightarrow 0} e^{x^{2} \cos \left(\frac{1}{x}\right)}$?
We showed earlier that $\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0$.
Therefore, since e^{x} is continuous, we have

$$
\lim _{x \rightarrow 0} e^{x^{2} \cos \left(\frac{1}{x}\right)}=e^{\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)}=e^{0}=1
$$

Ex: What is $\lim _{x \rightarrow \infty} \sqrt{\frac{x+1}{2 x+5}}$?

Solution: Since the square root function is continuous,

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \sqrt{\frac{x+1}{2 x+5}} & =\sqrt{\lim _{x \rightarrow \infty} \frac{x+1}{2 x+5}} \\
& =\sqrt{\lim _{x \rightarrow \infty} \frac{x\left(1+\frac{1}{x}\right)}{x\left(2+\frac{5}{x}\right)}}=\sqrt{\frac{1+0}{2+0}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

