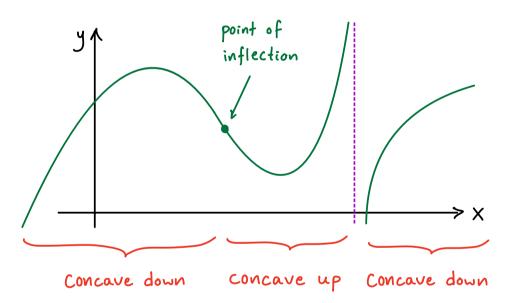
<u>§4.4 - Concavity</u>

We know what f'(x) tells us about f(x), but what information about f(x) can we get from its <u>second</u> <u>derivative</u>, f''(x)? Also written $\frac{d^2f}{dx^2}$ or $\frac{d^2y}{dx^2}$

If
$$f''(x) \ge 0$$
 for all x in an interval I, then $f'(x)$
— the slope of the tangent line — is increasing on I.
If In this case we say f is concave
up on I.

If $f''(x) \leq 0$ for all x in an interval I, then f'(x)— the slope of the tangent line — is decreasing on I. In this case we say f is <u>concave</u> <u>down</u> on I. <u>Note</u>: Since intervals of increase/decrease of f' are separated by points where its derivative is 0 or DNE, intervals of concavity are separated by points where f''(x) = 0 or DNE.



If X = C is a point in the domain of f separating intervals of <u>opposite</u> concavity, we call X = C a <u>point of inflection</u>.

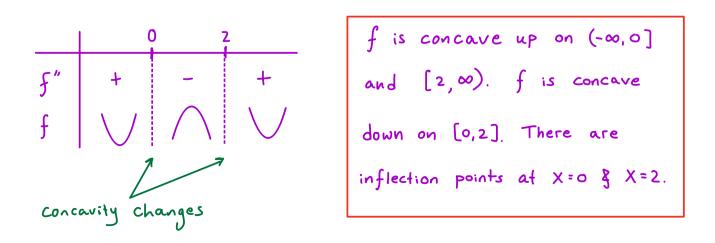
Ex: Find the intervals of concavity and any
points of inflection.
(a)
$$f''(x) = x^2 + 10x - 1$$

Solution: $f'(x) = 2x + 10$, $f''(x) = 2$
L positive everywhere

$$f$$
 is concave up on $(-\infty,\infty)$; no inflection points.

(b)
$$f(x) = x^{4} - 4x^{3} + 1$$

Solution: $f'(x) = 4x^{3} - 12x^{2}$, $f''(x) = 12x^{2} - 24x$
 $f''(x) = 0 \implies 12x^{2}(x-2) = 0 \implies x=0 \text{ or } x=2$



The Second Derivative Test
Suppose
$$f'(c) = 0$$
 and f'' is continuous near $X = c$.
(i) $f''(c) > 0 \implies local min at $x = c$
(ii) $f''(c) < 0 \implies local max at $x = c$.
(iii) $f''(c) = 0 \implies the test gives no information. We$
may have a local max, local min, or neither.$$

Ex: Classify the critical point of
$$f(x) = x^{4} - 4x^{3} + 1$$

at $x = 3$ as a local max, min, or neither.
Solution: $f''(x) = 12x^{2} - 24x \implies f''(3) = 36$.
Since $f''(3) > 0$, there is a local min at $x = 3$.