\$4.4 - Concavity

We know what $f^{\prime}(x)$ tells us about $f(x)$, but what information about $f(x)$ can we get from its second derivative, $f^{\prime \prime}(x)$? Also written $\frac{d^{2} f}{d x^{2}}$ or $\frac{d^{2} y}{d x^{2}}$

If $f^{\prime \prime}(x) \geqslant 0$ for all x in an interval I, then $f^{\prime}(x)$

- the slope of the tangent line - is increasing on I.

In this case we say f is concave up on I.

If $f^{\prime \prime}(x) \leqslant 0$ for all x in an interval I, then $f^{\prime}(x)$

- the slope of the tangent line - is decreasing on I.

In this case we say f is concave down on I.

Note: Since intervals of increase/decrease of f^{\prime} are separated by points where its derivative is 0 or DNE, intervals of concavity are separated by points where $f^{\prime \prime}(x)=0$ or DNE.

If $x=c$ is a point in the domain of f separating intervals of opposite concavity, we call $x=c$ a point of inflection.

Ex: Find the intervals of concavity and any points of inflection.
(a) $f^{\prime \prime}(x)=x^{2}+10 x-1$

Solution: $f^{\prime}(x)=2 x+10, \quad f^{\prime \prime}(x)=2$
positive everywhere
$\therefore f$ is concave up on $(-\infty, \infty)$; no inflection points.
(b) $\quad f(x)=x^{4}-4 x^{3}+1$
exists everywhere.

Solution: $\quad f^{\prime}(x)=4 x^{3}-12 x^{2}, \quad f^{\prime \prime}(x)=12 x^{2}-24 x$

$$
f^{\prime \prime}(x)=0 \quad \Rightarrow \quad 12 x^{2}(x-2)=0 \quad \Rightarrow \quad x=0 \text { or } x=2
$$

| | | 0 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| $f^{\prime \prime}$ | + | - | + |
| f | \ddots | \cap | \bigcup |

concavity changes
f is concave up on $(-\infty, 0]$ and $[2, \infty) . f$ is concave down on $[0,2]$. There are inflection points at $x=0 \& x=2$.

Concavity gives us a second method for classifying local maxima and minima!

The Second Derivative Test

Suppose $f^{\prime}(c)=0$ and $f^{\prime \prime}$ is continuous near $x=c$.
(i) $f^{\prime \prime}(c)>0 \Rightarrow$ local min at $x=c$
(ii) $f^{\prime \prime}(c)<0 \Rightarrow$ local max at $x=c$.
(iii) $f^{\prime \prime}(c)=0 \Rightarrow$ the test gives no information. We may have a local max, local min, or neither.

Ex: Classify the critical point of $f(x)=x^{4}-4 x^{3}+1$ at $x=3$ as a local max, min, or neither.

Solution: $f^{\prime \prime}(x)=12 x^{2}-24 x \Rightarrow f^{\prime \prime}(3)=36$.
Since $f^{\prime \prime}(3)>0$, there is a local min at $x=3$.

