§1.6 -Compositions and Inverses

Given two functions $f(x)$ and $g(x)$, the composition of f with g, denoted $f \circ g$, is the function

$$
(f \circ g)(x)=f(g(x))
$$

Similarly,

$$
(g \circ f)(x)=g(f(x))
$$

Ex: Let $f(x)=x^{2}+1$ and $g(x)=x+7$.

$$
\begin{aligned}
& (f \circ g)(1)=f(g(1))=f(1+7)=f(8)=8^{2}+1=65 \\
& (g \circ f)(1)=g(f(1))=g\left(1^{2}+1\right)=g(2)=2+7=9 \\
& (f \circ g)(x)=f(g(x))=f(x+7)=(x+7)^{2}+1 \\
& (g \circ f)(x)=g(f(x))=g\left(x^{2}+1\right)=\left(x^{2}+1\right)+7=x^{2}+8
\end{aligned}
$$

Note: We can also talk about $f \circ f, g \circ g, g \circ f \circ g$, etc.

The domain of $f(g(x))$ is found as before (i.e., by removing any "problem points"), but now we must also account for the domain of $g(x)$, the inner function, by removing its "problem points".

Ex: Let $f(x)=\frac{x}{1+x}, g(x)=\frac{1}{x}$. Find $f(g(x))$ its domain.

Solution: $f(g(x))=f\left(\frac{1}{x}\right)=\frac{\frac{1}{x}}{1+\frac{1}{x}}=\frac{\frac{1}{x}}{\frac{x}{x}+\frac{1}{x}}$ Must exclude $x=0$ since it's not in the domain of g !

$$
=\frac{\frac{1}{x}}{\frac{x+1}{x}}
$$

Must exclude $x=-1, \quad=\frac{1}{x} \cdot \frac{x}{x+1}$
else we divide by 0

$$
=\frac{1}{x+1}
$$

$$
\therefore \text { Domain }=\{x \in \mathbb{R}: x \neq 0 \text { and } x \neq-1\}
$$

Ex: If $f(x)=\sqrt{x}+1$ and $g(x)=(x-1)^{2}+1$, find $g \circ f$ as well as its domain and range.

Solution: $\quad g(f(x))=g(\sqrt{x}+1)=((\sqrt{x}+1)-1)^{2}+1$

$$
=(\sqrt{x})^{2}+1=x+1
$$

Domain: All $x \in \mathbb{R}$, but we also need $x \geqslant 0$ for the domain of f, hence domain $=[0, \infty)$.

Range: Since $y=g(f(x))=x+1$ with $x \in[0, \infty)$,

$$
\text { range }=[1, \infty) \text {. }
$$

Inverse Functions

Given an input x, a function $y=f(x)$ tells us the corresponding y-value. But what if we start with y and want the corresponding x ?

Ex: $y=f(x)=\frac{x+3}{x}$. Find x such that $y=7$

Solution: $y=7=\frac{x+3}{x} \Rightarrow 7 x=x+3$

$$
\begin{aligned}
& \Rightarrow \quad 6 x=3 \\
& \Rightarrow \quad x=3 / 6=\frac{1}{2}
\end{aligned}
$$

In fact, we can do this with any y :

$$
\begin{aligned}
y=\frac{x+3}{x} & \Rightarrow x y=x+3 \\
& \Rightarrow x y-x=3 \\
& \Rightarrow x(y-1)=3 \Rightarrow x=\frac{3}{y-1}
\end{aligned}
$$

This new function is called the inverse of f and is written $x=f^{-1}(y)$. It "undoes" the function f !
e.g. With $y=f(x)=\frac{x+3}{x}$, if $y=7$, then

$$
x=f^{-1}(y)=\frac{3}{y-1}=\frac{3}{7-1}=\frac{1}{2}
$$

(same as before!)

Note: We often like seeing x as the input variable and y as the output variable, even for inverses.

So, we usually swap x and y when calculating f^{-1}.
e.g. In our previous example, we have

$$
f(x)=\frac{x+3}{x} \Rightarrow f^{-1}(x)=\frac{3}{x-1}<f^{-1}(y)=\frac{3}{y-1}
$$

Ex: Find $f^{-1}(x)$ given $f(x)=\frac{2 x}{3 x-1}$.

Solution: $y=\frac{2 x}{3 x-1} \Rightarrow y(3 x-1)=2 x$

$$
\begin{aligned}
& \Rightarrow \quad 3 x y-y=2 x \\
& \Rightarrow \quad x(3 y-2)=y \\
& \Rightarrow \quad x=\frac{y}{3 y-2}
\end{aligned}
$$

Swapping the variables: $y=f^{-1}(x)=\frac{x}{3 x-2}$

Q: Do all functions have inverses? No!

Ex: Consider $y=f(x)=x^{2}$.

There is no way to "undo" f since $y=4$, for example, could have come from
 multiple x values: $x=2$ or $x=-2$.

For a function $y=f(x)$ to have an inverse, it must pass the horizontal line test: every horizontal line intersects the graph of f at most once.

To get an inverse for $f(x)=x^{2}$, we would need to restrict its domain

Graphically, $f^{-1}(x)$ can be obtained by reflecting the graph of $f(x)$ over the line $y=x$.

Useful facts: Domain of $f=$ Range of f^{-1}

- Range of $f=$ Domain of f^{-1}.

Ex: What is the range of $f(x)=\frac{2 x}{3 x-1}$?

Solution: We showed earlier that $f^{-1}(x)=\frac{x}{3 x-2}$
The domain of f^{-1} is $\{x \in \mathbb{R}: x \neq 2 / 3\}$ and hence the range of f is $\{y \in \mathbb{R}: y \neq 2 / 3\}$.

