Applications of Integration

The remainder of MATH 116 will be devoted to applications.

Bigidea: Integrals arise when adding a continuum of tiny quantities. You can think of $\int_{a}^{b} f(x) d x$ like a big sum!
§6.6 -Average Values

Recall: The average value of real numbers $y_{1}, y_{2}, \ldots, y_{n}$ is

$$
\begin{array}{r}
y_{\text {avg. }}=\frac{y_{1}+y_{2}+\cdots+y_{n}}{n} \text { add all quantities } \\
\\
\begin{array}{l}
\text { divide by the number of } \\
\text { quantities (the sample size) }
\end{array}
\end{array}
$$

Similarly, we can define the notion of an "average" for infinitely many quantities. Specifically, the average value of $y=f(x)$ for $x \in[a, b]$ is

(Similar to dividing by the sample size!)

Ex: The average value of $f(x)=x^{2}$ for $x \in[0,2]$ is

$$
\begin{aligned}
f_{\text {avg. }} & =\frac{1}{2-0} \int_{0}^{2} f(x) d x \\
& =\frac{1}{2} \int_{0}^{2} x^{2} d x=\frac{1}{2}\left[\frac{x^{3}}{3}\right]_{0}^{2}=\frac{1}{2}\left(\frac{8}{3}\right)=\frac{4}{3}
\end{aligned}
$$

Geometrically, $f_{\text {avg. }}=\frac{4}{3}$ means that $f(x)=x^{2}$ and the constant function $y=4 / 3$ enclose the same area for $x \in[0,2]$.

Ex: The temperature throughout the day is given by

$$
T(t)=4-\pi \sin \left(\frac{\pi}{12} t\right) \quad{ }^{\circ} \mathrm{C}
$$

where t is the time in hours since midnight $(t=0)$.
Determine the average temperature from midnight to noon.

Solution: For $t \in[0,12]$, we have

$$
\begin{aligned}
T_{\text {avg. }} & =\frac{1}{12-0} \int_{0}^{12}\left(4-\pi \sin \left(\frac{\pi}{12} t\right)\right) d t \\
& =\frac{1}{12} \int_{0}^{12} 4 d t-\frac{\pi}{12} \int_{0}^{12} \sin \left(\frac{\pi}{12} t\right) d t \\
& =\frac{1}{12}[4 t]_{0}^{12}-\frac{\frac{\pi}{12}}{12} \cdot\left[\frac{-\cos \left(\frac{\pi}{12} t\right)}{\frac{\pi}{12}}\right]_{0}^{12} \\
& =\frac{1}{12}[4(12)-0]+[\cos (\pi)-\cos (0)] \\
& =4+(-1)-1 \\
& =2^{\circ} \mathrm{C}
\end{aligned}
$$

§7.1 - Area Between Curves

Recall: If $f(x) \geqslant 0$, then the area between the graph of f and the x-axis from $x=a$ to $x=b$ is

$$
\begin{equation*}
\text { Area }=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

More generally, the area between two curves from $x=a$ to $x=b$ can be calculated as

$$
\begin{equation*}
\text { Area }=\int_{a}^{b}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x \tag{2}
\end{equation*}
$$

Note: Formula (1) is really a special case of formula (2) where $y_{\text {upper }}=f(x)$ and $y_{\text {lower }}=0$, the x-axis.

Ex: Find the area enclosed between $y=x$ and $y=x^{2}$
(a) from $x=2$ to $x=3$
(b) from $x=0$ to $x=3$

Solution: Start with a picture!
(a) For $x \in[2,3]$, we have $x \leq x^{2}$, hence

$$
\begin{aligned}
\text { Area } & =\int_{2}^{3}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x \\
& =\int_{2}^{3}\left(x^{2}-x\right) d x \\
& =\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{2}^{3}=\ldots=\frac{23}{6}
\end{aligned}
$$

(b) The curves intersect when $x^{2}=x$, so $x=0$ or $x=1$.

For $x \in[0,1]$, we have $x^{2} \leq x$; while for $x \in[1,3]$, we have $x \leq x^{2}$, hence

$$
\begin{aligned}
\text { Area } & =\int_{0}^{1}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x+\int_{1}^{3}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x \\
& =\int_{0}^{1}\left(x-x^{2}\right) d x+\int_{1}^{3}\left(x^{2}-x\right) d x \\
& =\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}+\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{3}=\cdots=\frac{1}{6}+\frac{14}{3}=\frac{29}{6}
\end{aligned}
$$

Ex: Calculate the area enclosed between $y=x^{2}$ and

$$
y=2 x^{2}-1
$$

Solution: The curves intersect when $x^{2}=2 x^{2}-1$, or equivalently, when $x^{2}=1$, hence $x= \pm 1$. We have $y_{\text {upper }}=x^{2}$ and $y_{\text {lower }}=2 x^{2}-1$. Thus,

$$
\begin{aligned}
\text { Area } & =\int_{-1}^{1}\left(x^{2}-\left(2 x^{2}-1\right)\right) d x \\
& =\int_{-1}^{1}\left(1-x^{2}\right) d x \\
& =\left[x-\frac{x^{3}}{3}\right]_{-1}^{1}=\cdots=\frac{4}{3}
\end{aligned}
$$

Note: It is actually possible to determine upper and lower without graphing! Instead
(i) find the points) where the curves cross, and
(ii) check the value of each function at a point in between to see which is $y_{\text {upper }} / y$ lower.

Ex: Calculate the area enclosed between $y=\cos x$ and $y=\sin x$ from $x=0$ to $x=\pi$.

Solution: The curves cross when $\sin x=\cos x$, hence, when $x=\frac{\pi}{4}$.

At $x=\pi / 6$, for example:

$$
\begin{array}{ll}
\cos (\pi / 6)=\frac{\sqrt{3}}{2}, & \sin (\pi / 6)=\frac{1}{2} \\
\Rightarrow y_{\text {upper }}=\cos x, & y_{\text {lower }}=\sin x
\end{array}
$$

At $x=\pi / 2$, for example:

$$
\begin{aligned}
& \cos (\pi / 2)=0, \sin (\pi / 2)=1 \\
& \Rightarrow y_{\text {upper }}=\sin x, \quad y_{\text {lower }}=\cos x
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 4}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x+\int_{\pi / 4}^{\pi}\left(y_{\text {upper }}-y_{\text {lower }}\right) d x \\
& =\int_{0}^{\pi / 4}(\cos x-\sin x) d x+\int_{\pi / 4}^{\pi}(\sin x-\cos x) d x \\
& =[\sin x+\cos x]_{0}^{\pi / 4}+[-\cos x-\sin x]_{\pi / 4}^{\pi} \\
& =\left[\left(\sin \frac{\pi}{4}+\cos \frac{\pi}{4}\right)-(\sin 0+\cos 0)\right]+\left[(-\cos \pi-\sin \pi)-\left(-\cos \frac{\pi}{4}-\sin \frac{\pi}{4}\right)\right] \\
& =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-1-(-1)+\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}=2 \sqrt{2}
\end{aligned}
$$

If we did graph, we would see the picture below:

If the region is enclosed between a left curve and a right curve from $y=c$ to $y=d$, then we can get the area in between by integrating with respect to y :

$$
\text { Area }=\int_{y=c}^{y=d}\left(x_{\text {rightmost }}-x_{\text {leftmost }}\right) d y
$$

Ex: Find the area between $x=y-1$ and $x=y^{2}$ for $y \in[0,2]$.
Solution:

Here, the region is bounded between $X_{\text {leftmost }}=y-1$ and $X_{\text {rightmost }}=y^{2}$ from $y=0$ to $y=2$.

$$
\begin{aligned}
\therefore \text { Area } & =\int_{0}^{2}\left(y^{2}-(y-1)\right) d y \\
& =\left[\frac{y^{3}}{3}-\frac{y^{2}}{2}+y\right]_{0}^{2}=\frac{8}{3}-\frac{4}{2}+2=\frac{8}{3}
\end{aligned}
$$

