<u>Applications of Integration</u>

The remainder of MATH 116 will be devoted to applications.

<u>Big idea</u>: Integrals arise when adding a continuum of tiny quantities. You can think of $\int_{a}^{b} f(x) dx$ like a big sum!

<u>§6.6 - Average Values</u>

<u>Recall</u>: The average value of real numbers y, y2, ..., yn is

Similarly, we can define the notion of an "average" for infinitely many quantities. Specifically, the <u>average value</u> of y = f(x) for $x \in [a, b]$ is

$$favg. = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$
Add" all quantities

Divide by the length of [a,b]

(similar to dividing by the sample size!)

<u>Ex</u>: The average value of $f(x) = x^2$ for $x \in [0, 2]$ is

$$\int avg = \frac{1}{2-0} \int_{0}^{2} f(x) dx$$
$$= \frac{1}{2} \int_{0}^{2} \chi^{2} dx = \frac{1}{2} \left[\frac{\chi^{3}}{3} \right]_{0}^{2} = \frac{1}{2} \left(\frac{g}{3} \right) = \frac{4}{3}$$

Geometrically,
$$f_{avg.} = \frac{4}{3}$$
 means that $f(x) = x^2$ and the constant function $y = \frac{4}{3}$ enclose the same area for $x \in [0, 2]$.

<u>Ex:</u> The temperature throughout the day is given by $T(t) = 4 - \pi \sin(\frac{\pi}{12}t)$ °C

where t is the time in hours since midnight (t=0). Determine the average temperature from midnight to noon.

Solution: For te [0,12], we have

$$T_{\alpha vg} = \frac{1}{12 - 0} \int_{0}^{12} \left(4 - \pi \sin\left(\frac{\pi}{12}t\right) \right) dt$$

$$= \frac{1}{12} \int_{0}^{12} 4 dt - \frac{\pi}{12} \int_{0}^{12} \sin\left(\frac{\pi}{12}t\right) dt$$

$$= \frac{1}{12} \left[4t \right]_{0}^{12} - \frac{\pi}{12} \cdot \left[\frac{-\cos\left(\frac{\pi}{12}t\right)}{\frac{\pi}{12}} \right]_{0}^{12}$$

$$= \frac{1}{12} \left[4(12) - 0 \right] + \left[\cos(\pi) - \cos(0) \right]$$

$$= 4 + (-1) - 1$$

$$= 2^{\circ}C$$

<u>§7.1 - Area Between Curves</u>

<u>Recall</u>: If $f(x) \ge 0$, then the area between the graph of f and the x-axis from X=a to X=b is

Area =
$$\int_{a}^{b} f(x) dx$$
 (1)

Ex: Find the area enclosed between
$$y=x$$
 and $y=x^2$
(a) from $x=2$ to $x=3$
(b) from $x=0$ to $x=3$
Solution: Start with a picture!

(a) For $X \in [2,3]$, we have $X \leq X^2$, hence

for $X \in [1,3]$, We have $X \leq X^2$, hence

Area =
$$\int_{0}^{1} (y_{upper} - y_{lower}) dx + \int_{1}^{3} (y_{upper} - y_{lower}) dx$$

= $\int_{0}^{1} (x - x^{2}) dx + \int_{1}^{3} (x^{2} - x) dx$
= $\left[\frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{0}^{1} + \left[\frac{x^{3}}{3} - \frac{x^{2}}{2}\right]_{1}^{3} = \dots = \frac{1}{6} + \frac{14}{3} = \frac{29}{6}$

Ex: Calculate the area enclosed between
$$y = x^2$$
 and $y = 2x^2 - 1$.

<u>Solution</u>: The curves intersect when $x^2 = 2x^2 - 1$, or equivalently, when $x^2 = 1$, hence $x = \pm 1$. We have

Yupper = x² and y lower = 2x²-1. Thus,

- <u>Note:</u> It is actually possible to determine Yupper and Ylower without graphing! Instead (i) find the point(s) where the curves cross, and (ii) check the value of each function at a point in between to see which is Yupper/Ylower.
- Ex: Calculate the area enclosed between $y = \cos x$ and $y = \sin x$ from x = 0 to $x = \pi$.

<u>Solution</u>: The curves cross when Sin X = Cos X, hence, when $X = \frac{\pi}{4}$.

At
$$X = TT/6$$
, for example:
 $\cos(TT/6) = \frac{\sqrt{3}}{2}$, $\sin(TT/6) = \frac{1}{2}$
 $\Rightarrow y_{upper} = \cos x$, $y_{lower} = \sin x$
 $TT/2$, for example:
 $\cos(TT/2) = 0$, $\sin(TT/2) = 1$
 $\Rightarrow y_{upper} = \sin x$, $y_{lower} = \cos x$

Thus, we have

$$Area = \int_{0}^{\pi/4} (y_{upper} - y_{lower}) dx + \int_{\pi/4}^{\pi} (y_{upper} - y_{lower}) dx$$

$$= \int_{0}^{\pi/4} (\cos x - \sin x) dx + \int_{\pi/4}^{\pi} (\sin x - \cos x) dx$$

$$= \left[\sin x + \cos x \right]_{0}^{\pi/4} + \left[-\cos x - \sin x \right]_{\pi/4}^{\pi}$$

$$= \left[(\sin \frac{\pi}{4} + \cos \frac{\pi}{4}) - (\sin \theta + \cos \theta) \right] + \left[(-\cos \pi - \sin \pi) - (-\cos \frac{\pi}{4} - \sin \frac{\pi}{4}) \right]$$

$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - 1 - (-1) + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 2\sqrt{2}$$

If we did graph, we would see the picture below:

If the region is enclosed between a left curve and a right curve from y=c to y=d, then we can get the area in between by integrating with respect to y:

Area =
$$\int_{y=c}^{y=d} (X_{r:ghtmost} - X_{leftmost}) dy$$

<u>Ex</u>: Find the area between $X = y^{-1}$ and $X = y^{2}$ for $y \in [0, 2]$. <u>Solution</u>:

Here, the region is bounded between $X = y^{-1}$ and $X = y^{2}$ $x = y^{2}$

$$\therefore \text{ Area } = \int_{0}^{2} \left(y^{2} - (y - 1) \right) dy$$
$$= \left[\frac{y^{3}}{3} - \frac{y^{2}}{2} + y \right]_{0}^{2} = \frac{g}{3} - \frac{y}{2} + 2 = \frac{g}{3}$$