The Absolute Value Function

This is our first example of a function that is piecewise - defined

$$
|x|=\left\{\begin{array}{cl}
x & \text { if } x \geqslant 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Some useful properties:

$$
\text { - }|a \cdot b|=|a| \cdot|b| \quad \cdot\left|\frac{a}{b}\right|=\frac{|a|}{|b|}
$$

However, note that $|a \pm b| \neq|a| \pm|b|$!
egg. $|-1+2|=|1|=1$
Not equal!

$$
|-1|+|2|=1+2=3
$$

Absolute values may also show up when simplifying squares and square roots:
e.g. What is $(\sqrt{x})^{2}$? It's x !

What is $\sqrt{x^{2}}$? It's $|x|$!
\longrightarrow Indeed, $\sqrt{1^{2}}=\sqrt{1}=1$ and $\sqrt{(-1)^{2}}=\sqrt{1}=1=|-1|$

This is important when solving equations.
e.g. $x^{2}=9 \quad \Rightarrow \quad \sqrt{x^{2}}=\sqrt{9}$

$$
\begin{array}{ll}
\Rightarrow & |x|=3 \\
\Rightarrow & x= \pm 3 .
\end{array}
$$

Equations and Inequalities

When working with absolute values, it often helps to break the problem into cases.

Ex: Find all x such that $x^{2}-3=|x-3|$.

Solution: Note that

$$
|x-3|=\left\{\begin{array}{cll}
x-3 & \text { if } x-3 \geqslant 0 & \text { (i.e., } x \geqslant 3) \\
-(x-3) & \text { if } x-3<0 & \text { (i.e., } x<3)
\end{array}\right.
$$

Two cases!

(I)

$$
\begin{aligned}
x<3: \quad x^{2}-3=|x-3| & \Rightarrow x^{2}-3=-(x-3) \\
& \Rightarrow x^{2}+x-6=0 \\
& \Rightarrow(x+3)(x-2)=0 .
\end{aligned}
$$

(Two solutions so for!) $\Rightarrow x=-3$ or $x=2$
(II) $x \geqslant 3: \quad x^{2}-3=|x-3| \Rightarrow x^{2}-\beta=x-3$

$$
\Rightarrow x^{2}-x=0
$$

In (II), we assumed $x \geqslant 3$

$$
\Rightarrow x(x-1)=0
$$

\therefore No solutions in Case (II)!

$$
\Rightarrow x=0 \text { or } x=1
$$

Solutions: $x=-3$ or $x=2$

Inequalities are no different, just make sure to reverse the inequality when multiplying/dividing by a negative!

Ex: Find all x such that $\frac{|2 x-3|}{x} \leq 1$

Solution: Note that $2 x-3$ changes sign when $2 x-3=0$, or $x=\frac{3}{2}$. We have

$$
|2 x-3|=\left\{\begin{array}{cl}
2 x-3 & \text { if } x \geqslant 3 / 2 \\
-(2 x-3) & \text { if } x<3 / 2
\end{array}\right.
$$

Furthermore, since we will multiply by x to clear the denominator, we should also consider $x>0$ vs. $x<0$ (and clearly $x=0$ isn't possible!). Thus,

Three cases

$$
\text { (I) } \begin{aligned}
x<0: \frac{|2 x-3|}{x} \leq 1 & \Rightarrow \frac{-(2 x-3)}{x} \leq 1 \\
& \stackrel{x}{\Rightarrow}-2 x+3 \leq x \\
& \Rightarrow 3 \leq 3 x \\
& \Rightarrow 1 \leqslant x \\
& \quad \text { (and } x<0 \text { in case (I)) }
\end{aligned}
$$

\therefore All $x \in(-\infty, 0)$ are solutions
(II)

$$
\begin{aligned}
0<x<3 / 2: \frac{|2 x-3|}{x} \leq 1 & \Rightarrow \\
& \frac{-(2 x-3)}{x} \leq 1 \\
& \Rightarrow-2 x+3 \leq x \\
& \Rightarrow 3 \leq 3 x \\
& \Rightarrow 1 \leq x \\
& (\text { and } 0<x<3 / 2 \text { in case (II)) }
\end{aligned}
$$

\therefore All $x \in[1,3 / 2)$ are solutions

$$
\text { (III) } \begin{aligned}
\frac{x \geqslant 3 / 2:}{} \frac{|2 x-3|}{x} \leqslant 1 & \Rightarrow \frac{2 x-3}{x} \leq 1 \\
& \cdot x \\
& \Rightarrow 2 x-3 \leq x \\
& \Rightarrow x \leq 3
\end{aligned}
$$

(and $x \geqslant 3 / 2$ in case (III)
\therefore All $x \in[3 / 2,3]$ are solutions.

Solution:

$$
\text { All } x \in(-\infty, 0) \cup[1,3 / 2) \cup[3 / 2,3]=(-\infty, 0) \cup[1,3]
$$

Additional Exercises:

1. Find all x such that $2|x-1|<|x|+2$.
2. Find all x such that $\left|\frac{3 x-2}{x-2}\right| \geqslant 1$.
3. Find all x such that $\left|x^{2}-2 x\right| \leq 3$.

Solutions:

1. Note that x and $x-1$ change signs at $x=0$ and $x=1$, respectively. Thus,

Three Cases!

(I) $x<0$:

$$
\begin{aligned}
2|x-1|<|x|+2 & \Rightarrow 2(-(x-1))<-x+2 \\
& \Rightarrow-2 x+2<-x+2 \\
& \Rightarrow 0<x
\end{aligned}
$$

(impossible, since $x<0$ in case (1))
\therefore No solutions with $x<0$.
(II) $0 \leq x<1$:

$$
\begin{aligned}
2|x-1|<|x|+2 & \Rightarrow 2(-(x-1))<x+2 \\
& \Rightarrow-2 x+3<x+2< \\
& \Rightarrow 0<3 x \\
& \Rightarrow 0<x
\end{aligned}
$$

(and $0 \leq x<1$ in case (II))
\therefore All $X \in(0,1)$ are solutions!
(III)

$$
\begin{aligned}
x \geqslant 1: 2|x-1|<|x|+2 & \Rightarrow 2(x-1)<x+2 \\
& \Rightarrow 2 x-2<x+2 \\
& \Rightarrow x<4
\end{aligned}
$$

(and $x \geqslant 1$ in case (III)
\therefore All $X \in[1,4)$ are solutions!

Solutions: All $x \in(0,1) \cup[1,4)=(0,4)$
2. $\left|\frac{3 x-2}{x-2}\right| \geqslant 1$.

Note that $x \neq 2$, else $\left|\frac{3 x-2}{x-2}\right|$ is undefined. We have

$$
\left|\frac{3 x-2}{x-2}\right| \geqslant 1 \quad \int \stackrel{|x-2|}{\Longleftrightarrow} \frac{|3 x-2|}{|x-2|} \geqslant 1
$$

$|x-2|>0$, so multiplying $\Longleftrightarrow|\underbrace{3 x-2}| \geqslant|x-2|$ by $|x-2|$ wont reverse
changes sign at $x=2 / 3$
changes sign at $x=2$.
the inequality!

Three Cases!

(I)

$$
\begin{aligned}
\underline{x<2 / 3}:|3 x-2| \geqslant|x-2| & \Rightarrow-(3 x-2) \geqslant-(x-2) \\
& \Rightarrow-3 x+2 \geqslant-x+2 \\
& \Rightarrow 0 \geqslant 2 x \\
& \Rightarrow 0 \geqslant x
\end{aligned}
$$

\therefore All $x \in(-\infty, 0]$ are solutions.
(II)

$$
\begin{aligned}
& \text { (1) } \begin{aligned}
2 / 3 \leqslant x<2:|3 x-2| \geqslant|x-2| & \Rightarrow 3 x-2 \geqslant-(x-2) \\
& \Rightarrow 3 x-2 \geqslant-x+2 \\
& \Rightarrow 4 x \geqslant 4 \\
& \Rightarrow x \geqslant 1
\end{aligned} \\
& \therefore \text { All } x \in[1,2) \text { are solutions. }
\end{aligned}
$$

(III)

$$
\begin{aligned}
\underline{x \geqslant 2:}|x| \cdot|x-2| \leq 3 . & \Rightarrow x(x-2) \leq 3 \\
& \Rightarrow x^{2}-2 x-3 \leq 0 \\
& \Rightarrow(x-3)(x+1) \leq 0
\end{aligned}
$$

Need $-1 \leq x \leq 3$ to achieve one positive
\therefore All $x \in[2,3]$ are solutions! factor and one negative factor.

Solutions: All $x \in(-\infty, 0] \cup[1,2) \cup[2,3]=(-\infty, 0] \cup[1,3]$.
3. $\left|x^{2}-2 x\right| \leq 3$.

Note that $\left|x^{2}-2 x\right|=|x(x-2)|=|x| \cdot|x-2|$, so we can restate the inequality as $|x| \cdot|x-2| \leq 3$.

Three cases!

(I) $x<0$:

$$
\begin{aligned}
|x| \cdot|x-2| \leq 3 . & \Rightarrow(-x) \cdot(-(x-2)) \leq 3 \\
& \Rightarrow \quad x^{2}-2 x-3 \leq 0 \\
& \Rightarrow(x-3)(x+1) \leq 0
\end{aligned}
$$

Need $-1 \leq x \leq 3$ to achieve one positive factor and one negative factor.
\therefore All $x \in[-1,0)$ are solutions!
(II)

$$
\begin{aligned}
0 \leq x<2:|x| \cdot|x-2| \leq 3 . & \Rightarrow x \cdot(-(x-2)) \leq 3 \\
& \Rightarrow \quad-x^{2}+2 x \leq 3
\end{aligned}
$$

$f(x)=x^{2}-2 x+3$ has no real

$$
\Rightarrow \quad x^{2}-2 x+3 \geqslant 0
$$

roots, so f is either always
positive or always negative.
Since $f(0)=3$ (positive!), $x^{2}-2 x+3>0$ for all x.
\therefore All $x \in[0,2)$ are solutions!
(III)

$$
\begin{aligned}
x>2:|3 x-2| \geqslant|x-2| & \Rightarrow 3 x-\not 2 \geqslant x-2 \\
& \Rightarrow 3 x \geqslant 0 \\
& \Rightarrow x \geqslant 0
\end{aligned}
$$

\therefore All $x \in(2, \infty)$ are solutions!

Solutions: All $x \in[-1,0) \cup[0,2) \cup(2, \infty)=[-1,2) \cup(2, \infty)$.

