Chapter 6 - Eigenvalues \& Eigenvectors
\$6.1 - Introduction to Eigenvalues \& Eigenvectors
Consider the matrices

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
17 & -15 \\
20 & -18
\end{array}\right] .
$$

Which matrix is "nicer"?

The question is vague... but the answer is Still most certainly A. But why?

Well... let's see how these matrices transform a vector $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$;

$$
A \vec{x}=\left[\begin{array}{l}
2 x_{1} \\
5 x_{2}
\end{array}\right], \quad A^{2} \vec{x}=\left[\begin{array}{c}
4 x_{1} \\
25 x_{2}
\end{array}\right], \quad A^{3} \vec{x}=\left[\begin{array}{c}
8 x_{1} \\
125 x_{2}
\end{array}\right], \text { etc... }
$$

Multiplying by A is predictable! In fact you could probably even guess that $A^{100} \vec{x}=\left[\begin{array}{c}2^{100} x_{1} \\ 5^{100} x_{2}\end{array}\right]$

What about B?

$$
B \vec{x}=\left[\begin{array}{l}
17 x_{1}-15 x_{2} \\
20 x_{1}-18 x_{2}
\end{array}\right], \quad B^{2} \vec{x}=\left[\begin{array}{c}
-11 x_{1}+15 x_{2} \\
-20 x_{1}+24 x_{2}
\end{array}\right], \quad B^{3} \vec{x}=\left[\begin{array}{l}
113 x_{1}-105 x_{2} \\
140 x_{1}-132 x_{2}
\end{array}\right], \text { etc. }
$$

Much worse! Multiplying by B is seemingly less predictable.

Multiplying by A was okay because A merely stretches the standard basis vectors, but doesn't rotate them!

While B may apply weird transformations to the standard basis, there are OTHER vectors out there that B only stretches!

Ex: $B\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{ll}17 & -15 \\ 20 & -18\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]=2\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
B\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{ll}
17 & -15 \\
20 & -18
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
-9 \\
-12
\end{array}\right]=-3\left[\begin{array}{l}
3 \\
4
\end{array}\right]
$$

So B stretches $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ by 2 , and $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ by -3 .

These special vectors are called B^{\prime} 's eigenvectors.
The stretching factors $(23-3)$ are the corresponding eigenvalues.

Definition: Let A be an $n \times n$ matrix. If \vec{x} is a non-zero vector in \mathbb{R}^{n} such that

$$
A \vec{x}=\lambda \vec{x}
$$

for some real number λ, then \vec{x} is called an eigenvector for A. The scalar λ is its corresponding eigenvalue.

Ex: Consider once again the matrices

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
17 & -15 \\
20 & -18
\end{array}\right]
$$

- Since $A\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]=2\left[\begin{array}{l}1 \\ 0\end{array}\right]$ we have that $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is an eigenvector of A with eigenvalue $\lambda=2$
- Since $A\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 5\end{array}\right]=5\left[\begin{array}{l}0 \\ 1\end{array}\right]$ we have that $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is a_{n} eigenvector of A with eigenvalue $\lambda=5$.

What about for B?

- Since $B\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]=2\left[\begin{array}{l}1 \\ 1\end{array}\right]$ we have that $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is a_{n} eigenvector of B with eigenvalue $\lambda=2$.
- Since $B\left[\begin{array}{l}3 \\ 4\end{array}\right]=\left[\begin{array}{c}-9 \\ -12\end{array}\right]=(-3)\left[\begin{array}{l}3 \\ 4\end{array}\right]$ we have that $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is an eigenvector of B with eigenvalue $\lambda=-3$

Ex: Let $A=\left[\begin{array}{ll}-3 & 6 \\ -2 & 4\end{array}\right]$. Which of the vectors $\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are eigenvectors for A ?

What are the corresponding eigenvalues?

Solution:

- $A\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{ll}-3 & 6 \\ -2 & 4\end{array}\right]\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}3 \\ 2\end{array}\right]$ is an eigenvector with eigenvalue $\lambda=1$
- Eigenvectors are non-zero, so $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is NOT an eigenvector
- $A\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{ll}-3 & 6 \\ -2 & 4\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is an eigenvector with eigenvalue $\lambda=0$.
- $\left.A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{ll}-3 & 6 \\ -2 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 2\end{array}\right] \quad \begin{array}{c}\text { Not a multiple } \\ \text { of }[1] \\ 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is NOT an eigenvector of A.

Finding Eigenvalues \& Eigenvectors
Suppose A is an $n \times n$ matrix.

A scalar λ is an eigenvalue of A if and only if $A \vec{x}=\lambda \vec{x}$ for some $\vec{x} \neq \overrightarrow{0}$.

That is, if and only if $A \vec{x}-\lambda \vec{x}=\overrightarrow{0}$, or equivalently, $(A-\lambda I) \vec{x}=\overrightarrow{0}$

This means $A-\lambda I$ has a non-zero vector in its nullspace, so by our BIG THEOREM
$\operatorname{det}(A-\lambda I)=0$

Thus, the eigenvalues of A are the scalars λ such that $\operatorname{det}(A-\lambda I)=0$, and the corresponding eigenvectors are the vectors in the nullspace of $A-\lambda I$.

Thus, we can find the eigenvalues and eigenvectors of A by following these 3 steps
(1) Compute $\operatorname{det}(A-\lambda I)$.
[This will be some function of λ.]
(2) Factor the function from (1) to find where it's 0 . [These will be our eigenvalues.]
(3) For each λ found in (2), Solve the system $(A-\lambda I) \vec{x}=\overrightarrow{0}$ to find $\operatorname{Null}(A-\lambda I)$.
[The solutions will be our eigenvectors]

Ex: Find the eigenvalues and eigenvectors for the matrix $A=\left[\begin{array}{ll}3 & 1 \\ 0 & 1\end{array}\right]$.

Solution: Follow the steps above.
(1)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right]\right) \\
& =(3-\lambda)(1-\lambda)
\end{aligned}
$$

(2)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 & \Leftrightarrow(3-\lambda)(1-\lambda)=0 \\
& \Leftrightarrow \lambda=3 \text { or } \lambda=1
\end{aligned}
$$

(These are our eigenvalues)
(3) We find the corresponding eigenvectors by Solving the system $(A-\lambda I) \vec{x}=\overrightarrow{0}$.

For $\lambda=3: \quad A-3 I=\left[\begin{array}{cc}0 & 1 \\ 0 & -2\end{array}\right]_{R_{2}+2 R_{1}}^{\sim}\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]_{\left(R R E_{F}\right)}$
Then $X_{1}=t, x_{2}=0$, so the solution is

$$
\vec{x}=t\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad t \in \mathbb{R} .
$$

(These are our eigenvectors for $\lambda=3$)

$$
\text { For } \lambda=1: \quad A-1 I=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]_{\sim}^{R_{i}\left(\frac{1}{2}\right)}\left[\begin{array}{cc}
1 & 1 / 2 \\
0 & 0
\end{array}\right]_{(R R E F)}
$$

Then $x_{2}=t, x_{1}=-\frac{1}{2} t$, so the solution is

$$
\vec{x}=t\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right], \quad t \in \mathbb{R}
$$

(These are our eigenvectors for $\lambda=1$)

Indeed, we can check that

$$
\left[\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=3\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right]=1\left[\begin{array}{c}
-1 / 2 \\
1
\end{array}\right]
$$

Ex: Find the eigenvalues and eigenvectors for

$$
A=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & -2 & -1 \\
0 & 2 & 1
\end{array}\right]
$$

(1)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & -1 & -1 \\
0 & -2-\lambda & -1 \\
0 & 2 & 1-\lambda
\end{array}\right]\right) \\
& =(-1-\lambda)\left|\begin{array}{cc}
-2-\lambda & -1 \\
2 & 1-\lambda
\end{array}\right| \\
& =-(1+\lambda)((-2-\lambda)(1-\lambda)+2) \\
& =-(1+\lambda)\left(-x^{2}+2 \lambda-\lambda+\lambda^{2}+2\right) \\
& =-(1+\lambda)\left(\lambda+\lambda^{2}\right) \\
& =-\lambda(1+\lambda)(1+\lambda)=-\lambda(1+\lambda)^{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)=0 & \Leftrightarrow-\lambda(1+\lambda)^{2}=0 \\
& \Leftrightarrow \lambda=0 \text { or } \lambda=-1
\end{aligned}
$$

(These are our eigenvalues)
(3) We find the corresponding eigenvectors by Solving the system $(A-\lambda I) \vec{x}=\overrightarrow{0}$.

$$
\begin{aligned}
& \text { For } \lambda=0: A-O I=\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & -2 & -1 \\
0 & 2 & 1
\end{array}\right] \begin{array}{c}
R_{1} \cdot(-1) \\
\sim \\
R_{3}+R_{2}
\end{array} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & -1 \\
0 & 0 & 0
\end{array}\right] \sim R_{2}\left(-\frac{1}{2}\right)\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right] \sim R_{1}-R_{2}\left[\begin{array}{ccc}
1 & 0 & 3 / 2 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right]_{\text {(REF) }}}
\end{aligned}
$$

we have $x_{3}=t, \quad x_{2}=\frac{1}{2} t, \quad x_{1}=-3 / 2 t$, so the solution is

$$
\vec{x}=t\left[\begin{array}{c}
-3 / 2 \\
1 / 2 \\
1
\end{array}\right], \quad t \in \mathbb{R}
$$

(These are our eigenvectors for $\lambda=0$)

$$
\begin{aligned}
& \text { For } \lambda=-1: \quad A-(-1) I=\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & -1 & -1 \\
0 & 2 & 2
\end{array}\right] \begin{array}{l}
\sim \\
R_{2}-R_{1} \\
R_{3}+2 R_{1}
\end{array} \\
& {\left[\begin{array}{ccc}
0 & -1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \stackrel{R_{1}(-1)}{\sim}\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]{ }_{(\text {PREF })}}
\end{aligned}
$$

we have $x_{1}=s, x_{3}=t$, and $x_{2}=-t$

Thus, the solution is

$$
\vec{x}=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right], \quad s, t \in \mathbb{R}
$$

(These are our eigenvectors for $\lambda=-1$)

Remarks:
(1) If A is an $n \times n$ matrix, then $\operatorname{det}(A-\lambda I)$
will be a polynomial in λ of degree n (meaning the highest power is λ^{n})

This is called the characteristic polynomial of A. and is sometimes written as $P_{A}(\lambda)=\operatorname{det}(A-\lambda I)$
(2) You may have noticed that we don't ever get just one eigenvector for λ, we get a whole subspace of eigenvectors!

The subspace Null (A- II) is called the eigenspace for the eigenvalue λ (the space of all its eigenvectors)
(3) Since the eigenspace contains infinitely many eigenvectors, I will often ask for a basis for the eigenspace.

You can find this by using the methods from $\S 3.4$:

- Find the general solution to $(A-\lambda I) \vec{x}=\overrightarrow{0}$
- Use the vectors on each parameter in your basis.

Ex: In the last example, $\left\{\left[\begin{array}{c}-3 / 2 \\ 1 / 2 \\ 1\end{array}\right]\right\}$ is a basis
for the $\lambda=0$ eigenspace, while $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis for the $\lambda=-1$ eigenspace.

Ex: Determine the eigenvalues for $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 3\end{array}\right]$
For each eigenvalue λ, find a basis for its corresponding eigenspace.
(1) The characteristic polynomial is

$$
\begin{aligned}
& P_{A}(\lambda)=\operatorname{det}(A-\lambda I) \\
&=\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & -1 \\
0 & 1-\lambda & 0 \\
1 & 0 & 3-\lambda
\end{array}\right]\right) \text { Let's expand about } \\
& \text { this row. } \\
&=(1-\lambda)\left|\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right| \\
&=(1-\lambda)((1-\lambda)(3-\lambda)+1) \\
&=(1-\lambda)\left(3-4 \lambda+\lambda^{2}+1\right) \\
&=(1-\lambda)\left(\lambda^{2}-4 \lambda+4\right)=(1-\lambda)(\lambda-2)^{2}
\end{aligned}
$$

(2)

$$
\begin{aligned}
P_{A}(\lambda)=0 & \Leftrightarrow(1-\lambda)(\lambda-2)^{2}=0 \\
& \Leftrightarrow \lambda=1 \text { or } \lambda=2
\end{aligned}
$$

(3) Well find a basis vector for each eigenspace by first computing $\operatorname{Null}(A-\lambda I)$.

$$
\begin{aligned}
& \text { For } \left.\lambda=1: A-1 I=\left[\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 2
\end{array}\right] \begin{array}{c}
R_{1} \uparrow R_{3} \\
\sim \\
0
\end{array} 0^{1} \begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & -1
\end{array}\right] \sim R_{2} \uparrow R_{3}\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right] \underset{R_{2}(-1)}{\sim}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \sim
\end{aligned}
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]_{(R R E F)}
$$

We have that $x_{1}=x_{3}=0$

$$
x_{2}=t
$$

Thus, the solution is $\vec{x}=t\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, so a basis is $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$

$$
\begin{aligned}
& \text { For } \lambda=2: A-2 I=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
0 & -1 & 0 \\
1 & 0 & 1
\end{array}\right] \begin{array}{l}
\sim \\
R_{2}(-1) \\
R_{3}+R_{1}
\end{array} \\
& {\left[\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \stackrel{R_{1}(-1)}{\sim}\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]_{\text {(TREF) }} \quad \begin{array}{l}
x_{3}=t \\
x_{2}=0 \\
x_{1}=-t
\end{array}}
\end{aligned}
$$

Thus, the solution is $\vec{x}=t\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], t \in \mathbb{R}$.
$\therefore A$ basis for the eigenspace is $\left\{\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$

Does every matrix have eigenvalues?
If so, how many?

Ex: $\left[R_{\pi / 2}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ has no real eigenvalues!
This is because $R \pi / 2$ rotates every vector countordockwise by $\pi / 2$, so no vector is merely stretched. Indeed,
$P_{A}(\lambda)=\lambda^{2}+1 \Longrightarrow$ no real roots!

It does, however, have 2 complex roots: $\pm i$

So $[R \pi / 2]$ has no real eigenvalues, but it does have 2 complex ones. In fact,
every $n \times n$ matrix has exactly n eigenvalues (counting repetition), though some may be complex!

Some Useful Eigenvalue Facts
The eigenvalues of an $n \times n$ matrix tell you a lot about its other properties!

Theorem [Eigenvalue Facts]:
Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

1. $\lambda_{1} \lambda_{2} \cdots \lambda_{n}=\operatorname{det}(A)$
2. $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=$ sum of diagonal entries

$$
=a_{11}+a_{22}+\cdots+a_{n n}
$$

Ex: If $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$, then $\left.\operatorname{det}(A)=(2)_{2}\right)-(1)(1)=3$.
and the sum of the diagonal entries is $2+2=4$.

The eigenvalues are $\lambda_{1}=1, \lambda_{2}=3$ (check)
Sure enough, $\lambda_{1} \lambda_{2}=3$ and $\lambda_{1}+\lambda_{2}=4$!

From 1. and our BIG THEOREM, we get
A is invertible $\Leftrightarrow \operatorname{det}(A) \neq 0$

$$
\Leftrightarrow \lambda_{1} \lambda_{2} \cdots \lambda_{n} \neq 0
$$

$\Leftrightarrow 0$ is not an eigenvalue of A.

This means we can add the statement "O is NOT an eigenvalue of A "
to our BIG THEOREM!

