$$\frac{\text{Chapter } 6 - \underline{\text{Eigenvalues } 8 \underline{\text{Eigenvectors}}}{86.1 - \underline{\text{Introduction to Eigenvalues } 8 \underline{\text{Eigenvectors}}}$$
Consider the matrices
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 17 & -15 \\ 20 & -18 \end{bmatrix}.$$
Which matrix is "nicer"?
The question is vague ... but the answer is Still
most certainly A. But why?
Well ... let's see how these matrices transform a
vector $\vec{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix};$

$$\frac{A\vec{x}}{x} = \begin{bmatrix} 2x_1 \\ 5x_2 \end{bmatrix}, \quad A^2\vec{x} = \begin{bmatrix} 4x_1 \\ 85x_2 \end{bmatrix}, \quad A^3\vec{x} = \begin{bmatrix} 8x_1 \\ 125x_2 \end{bmatrix}, \text{ etc...}$$
Multiplying by A is predictable! In fact you
could probably even guess that $A^{100}\vec{x} = \begin{bmatrix} 2^{10} \\ 5^{10} \\$

What about B?

$$B\vec{x} = \begin{bmatrix} 17x_1 - 15x_2\\ 20x_1 - 18x_2 \end{bmatrix}, \quad B^2\vec{x} = \begin{bmatrix} -11x_1 + 15x_2\\ -20x_1 + 24x_2 \end{bmatrix}, \quad B^3\vec{x} = \begin{bmatrix} 113x_1 - 105x_2\\ 140x_1 - 132x_2 \end{bmatrix}, \text{ efc.}$$

Much worse! Multiplying by B is Seemingly less
predictable.

Multiplying by A was okay because A merely stretches the standard basis vectors, but doesn't rotate them!

While B May apply weird transformations to the standard basis, there are <u>OTHER vectors</u> out there that <u>B</u> only stretches!

 $Ex: B\begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 17 & -15\\ 20 & -18 \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 2\\ 2 \end{bmatrix} = 2\begin{bmatrix} 1\\ 1 \end{bmatrix}$ $B\begin{bmatrix} 3\\ 4 \end{bmatrix} = \begin{bmatrix} 17 & -15\\ 20 & -18 \end{bmatrix} \begin{bmatrix} 3\\ 4 \end{bmatrix} = \begin{bmatrix} -9\\ -12 \end{bmatrix} = -3\begin{bmatrix} 3\\ 4 \end{bmatrix}$ $So B \text{ stretches } \begin{bmatrix} 1\\ 1 \end{bmatrix} \text{ by } 2, \text{ and } \begin{bmatrix} 3\\ 4 \end{bmatrix} \text{ by } -3.$

These special vectors are called B's eigenvectors.
The stretching factors
$$(2g-3)$$
 are the corresponding eigenvalues.
Definition: Let A be an nxn matrix. If
 \vec{x} is a non-zero vector in \mathbb{R}^n such that
 $\vec{A} \vec{x} = \lambda \vec{x}$

for some real number
$$\lambda$$
, then \overline{x} is called an
eigenvector for A. The scalar λ is its
corresponding eigenvalue.

Ex: Consider once again the matrices

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 17 & -15 \\ 20 & -18 \end{bmatrix}$$
• Since $A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ we have that

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 is an eigenvector of A with eigenvalue $\lambda = 2$.

• Since
$$A \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 we have that
 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigenvector of A with eigenvalue $\lambda = 5$.

• Since B[I] = [z] = z[I] we have that [I] is an eigenvector of B with <u>eigenvalue</u> $\lambda = 2$.

• Since
$$B\begin{bmatrix} 3\\ 4 \end{bmatrix} = \begin{bmatrix} -9\\ -12 \end{bmatrix} = (-3)\begin{bmatrix} 3\\ 4 \end{bmatrix}$$
 we have that
 $\begin{bmatrix} 3\\ 4 \end{bmatrix}$ is an eigenvector of B with eigenvalue $\lambda = -3$.

Ex: Let $A = \begin{bmatrix} -3 & 6 \\ -2 & 4 \end{bmatrix}$. Which of the vectors $\begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are eigenvectors for A? What are the corresponding eigenvalues?

Solution:

•
$$A\begin{bmatrix}3\\2\end{bmatrix} = \begin{bmatrix}-3 & 6\\-2 & 4\end{bmatrix}\begin{bmatrix}3\\2\end{bmatrix} = \begin{bmatrix}3\\2\end{bmatrix}$$

 $\implies \begin{bmatrix}3\\2\end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 1$.

- Eigenvectors are non-zero, so [o] is NOT an eigenvector
- $A\begin{bmatrix} z \\ l \end{bmatrix} = \begin{bmatrix} -3 & 6 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} z \\ l \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\implies \begin{bmatrix} 2 \\ l \end{bmatrix}$ is an eigenvector with eigenvalue $\lambda = 0$.
- $A\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}-3 & 6\\-2 & 4\end{bmatrix}\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}3\\2\end{bmatrix}$ Not a multiple of $\begin{bmatrix}1\\1\end{bmatrix}$. $\Rightarrow \begin{bmatrix}1\\1\end{bmatrix}$ is Not an eigenvector of A.

Finding Eigenvalues & Eigenvectors
Suppose A is an
$$n \times n$$
 matrix.
A scalar λ is an eigenvalue of A if and only if
 $A \neq = \lambda \neq f$ for some $\neq \neq = 0$.
That is, if and only if $A \neq -\lambda \neq = 0$, or
equivalently, $(A - \lambda \pm) \neq = 0$.
This means $A - \lambda \pm$ has a non-zero vector in
its nullspace, so by our BIG THEOREM
 $det(A - \lambda \pm) = 0$.
Thus, the eigenvalues of A are the scalars
in the eigenvalues of A are the scalars

2 such that
$$det(A-\lambda I) = 0$$
, and the
corresponding eigenvectors are the vectors in
the nullspace of $A - \lambda I$.

Ex: Find the eigenvalues and eigenvectors for
the matrix
$$A = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$$
.

Solution: Follow the steps above.
(1)
$$det(A - \lambda I) = det(\begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$

 $= det(\begin{bmatrix} 3 - \lambda & 1 \\ 0 & 1 - \lambda \end{bmatrix})$
 $= (3 - \lambda \chi I - \lambda)$

(2)
$$det(A - \lambda I) = 0 \iff (3 - \lambda)(1 - \lambda) = 0$$

 $\Leftrightarrow \lambda = 3 \text{ or } \lambda = 1$
(These are our eigenvalues)
(3) We find the corresponding eigenvectors by
solving the system $(A - \lambda I) \overrightarrow{x} = \overrightarrow{0}$.
(5) $F_{or} \lambda = 3$: $A - 3I = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix} \stackrel{\sim}{R_2 + 2R_1} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ (RREF)
Then $X_1 = t$, $X_2 = 0$, so the solution is

$$\vec{X} = t \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad t \in \mathbb{R}.$$
(These are our eigenvectors for $\lambda = 3$)
For $\lambda = 1$: $A - 1I = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} \stackrel{\text{Ri}(\frac{1}{2})}{\sim} \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{bmatrix} (\text{RREF})$
Then $Xz = t, \quad X_1 = -\frac{1}{2}t, \quad \text{So the Solution is}$

$$\vec{X} = t \begin{bmatrix} -\frac{1}{2}t \\ 1 \end{bmatrix}, \quad t \in \mathbb{R}$$
(These are our eigenvectors for $\lambda = 1$)

Indeed, we can check that

$$\begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix} = 1 \begin{bmatrix} -\frac{1}{2} \\ 1 \end{bmatrix}$$
Ex: Find the eigenvalues and eigenvectors for

$$A = \begin{bmatrix} -1 & -1 & -1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{bmatrix}$$

(1) det
$$(A - \lambda I) = det \begin{pmatrix} -1 - \lambda & -1 & -1 \\ 0 & -2 - \lambda & -1 \\ 0 & 2 & 1 - \lambda \end{pmatrix}$$

$$= (-1 - \lambda) \begin{vmatrix} -2 - \lambda & -1 \\ -2 & 1 - \lambda \end{vmatrix}$$

$$= -(1 + \lambda) ((-2 - \lambda)(1 - \lambda) + 2)$$

$$= -(1 + \lambda) (-2 + 2\lambda - \lambda + \lambda^{2} + 2)$$

$$= -(1 + \lambda) (-2 + 2\lambda - \lambda + \lambda^{2} + 2)$$

$$= -(1 + \lambda) (\lambda + \lambda^{2})$$

$$= -\lambda (1 + \lambda) (1 + \lambda) = -\lambda (1 + \lambda)^{2}$$
(2) det $(A - \lambda I) = 0 \iff -\lambda (1 + \lambda)^{2} = 0$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda (1 + \lambda)^{2} = 0$$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda (1 + \lambda)^{2} = 0$$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda (1 + \lambda)^{2} = 0$$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda (1 + \lambda)^{2} = 0$$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda (1 + \lambda)^{2} = 0$$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda (1 + \lambda)^{2} = 0$$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda (1 + \lambda)^{2} = 0$$

$$\Leftrightarrow \qquad \lambda = 0 \iff -\lambda = -1.$$

$$(These are our eigenvalues)$$
(3) We find the corresponding eigenvectors by solving the system $(A - \lambda I) : \vec{x} = \vec{0}$.

$$\begin{array}{l} \overline{For} \ \lambda = 0: \quad A - OI = \left[\begin{array}{c} -1 & -1 & -1 \\ 0 & -2 & -1 \\ 0 & 2 & 1 \end{array} \right] \stackrel{R_{1}}{R_{3} + R_{2}} \\ \left[\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \end{array} \right] \stackrel{R_{2}}{R_{2}} \left[\begin{array}{c} 1 & 1 & 1 \\ 0 & 1 & -V_{2} \\ 0 & 0 & 0 \end{array} \right] \stackrel{R_{1} - R_{2}}{R_{2}} \left[\begin{array}{c} 1 & 0 & \frac{3}{4} \\ 0 & 1 & -V_{2} \\ 0 & 0 & 0 \end{array} \right] \stackrel{R_{1} - R_{2}}{R_{2}} \left[\begin{array}{c} 1 & 0 & \frac{3}{4} \\ 0 & 1 & -V_{2} \\ 0 & 0 & 0 \end{array} \right] \stackrel{R_{1} - V_{2}}{R_{2} + R_{2}} \\ We \quad have \quad X_{3} = t, \quad X_{2} = \frac{1}{2}t, \quad X_{1} = -\frac{3}{4}t, \quad So \\ \text{He solution TS} \\ \stackrel{R_{2} = t \left[\begin{array}{c} -3/2 \\ V_{2} \\ 1 \\ 1 \end{array} \right] }{(\text{These are our eigenvectors for } \lambda = 0)} \\ \overline{For} \quad \lambda = -1: \quad A - (-1)I = \left[\begin{array}{c} 0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{array} \right] \stackrel{N}{R_{3} + 2R_{1}} \\ \begin{array}{c} \left[\begin{array}{c} 0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{array} \right] \stackrel{R_{1}(-1)}{R_{3} + 2R_{1}} \\ \hline \end{array} \right] \\ \left[\begin{array}{c} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \\ (REF) \end{array}$$

We have $X_1 = S$, $X_3 = t$, and $X_2 = -t$

Thus, the solution is $\vec{X} = S \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad S, t \in \mathbb{R}$ (These are our eigenvectors for $\lambda = -1$)

Remarks:

(1) If A is an nxn matrix, then
$$det(A-\lambda I)$$

Will be a polynomial in λ of degree n
(meaning the highest power is λ^n)

This is called the characteristic polynomial of A.
and is sometimes written as
$$P_A(\lambda) = det(A - \lambda I)$$

The subspace Null
$$(A-\lambda I)$$
 is called the eigenspace for
the eigenvalue λ (the space of all its eigenvectors)

• Find the general solution to
$$(A - \lambda I)\vec{x} = \vec{0}$$

Ex: In the last example,
$$\left\{ \begin{bmatrix} -3/2 \\ 1/2 \\ 1 \end{bmatrix} \right\}$$
 is a basis
for the $\lambda = 0$ eigenspace, while $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\}$
is a basis for the $\lambda = -1$ eigenspace.

EX: Determine the eigenvalues for
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}$$

For each eigenvalue λ , find a basis for its
corresponding eigenspace.

(1) The characteristic polynomial is

$$P_{A}(\lambda) = \det (A - \lambda I)$$

$$= \det \left(\begin{bmatrix} 1 - \lambda & 0 & -1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & 3 - \lambda \end{bmatrix} \right) \qquad \text{Let's expand about}$$

$$= (1 - \lambda) \begin{bmatrix} 1 - \lambda & -1 \\ 1 & 3 - \lambda \end{bmatrix}$$

$$= (1 - \lambda) \left((1 - \lambda)(3 - \lambda) + 1 \right)$$

$$= (1 - \lambda) \left(3 - 4\lambda + \lambda^{2} + 1 \right)$$

$$= (1 - \lambda) (\lambda^{2} - 4\lambda + 4) = (1 - \lambda)(\lambda - 2)^{2}$$

(2)
$$P_A(\lambda) = 0 \iff (1 - \lambda)(\lambda - 2)^2 = 0$$

 $\iff \lambda = 1 \text{ or } \lambda = 2$

3 We'll find a basis vector for each eigenspace by first computing Null(A-ZI). $F_{or} \lambda = 1: A - 1I = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix} \xrightarrow{\ \ } R_{,1} R_{,3}$ $\begin{vmatrix} 1 & 0 & 7 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \\ R_2 \uparrow R_3 \\ \end{vmatrix} \begin{vmatrix} 1 & 0 & 2 \\ 0 & 0 & -1 \\ R_2 (-1) \\ \end{vmatrix} \sim \begin{vmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{vmatrix} \sim \begin{vmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{vmatrix} \sim \begin{vmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{vmatrix}$ We have that $X_1 = X_3 = 0$ $X_2 = +$ | 0 0 | | 0 0 | | 0 0 0 | (RREF) $X_2 = t$ Thus, the solution is $\vec{X} = t \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, so a basis

 $\begin{bmatrix} & & \\ &$

For
$$\lambda = 2$$
: $A - 2I = \begin{bmatrix} -1 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \xrightarrow{K_{2}(-1)} \begin{array}{c} R_{2}(-1) \\ R_{3} + R_{1} \end{array}$

$$\begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{K_{2}(-1)} \begin{array}{c} 1 & 0 & 1 \\ 0 & 1 & 0 \\ R_{3} + R_{1} \end{array}$$

$$\begin{bmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ R_{3} + R_{1} \end{bmatrix} \xrightarrow{K_{3} = t} \begin{array}{c} K_{3} = t \\ X_{2} = 0 \\ R_{2} = 0 \\ K_{1} = -t \end{bmatrix}$$
Thus, the solution is $X = t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, teR.
$$\therefore A \text{ basis for the eigenspace is } \left[\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right], \text{ teR.}$$

$$\therefore A \text{ basis for the eigenspace is } \left[\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right].$$

$$Does \text{ every Matrix}$$
have eigenvalues?
$$If \text{ so, how many?}$$

$$Ex: \begin{bmatrix} R_{T_{2}} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \text{ has no real eigenvalues!}$$
This is because $R_{T_{2}}$ rotates every vector counterclockwise by T_{2} , so no vector is merely stretched. Indeed,

$$P_{A}(\lambda) = \lambda^{2} + 1 \implies no real roots!$$

$$T + does, however, have 2 complex roots: \pm i$$

$$So \left[R_{\pi/2}\right] has no real eigenvalues, but it does$$

$$have 2 complex ones. In fact,$$

$$every nxn matrix has exactly n eigenvalues$$

$$(counting repetition), though some may be complex!$$

Some Useful Eigenvalue Facts
The eigenvalues of an nxn matrix tell you
a lot about its other properties!
Theorem [Eigenvalue Facts]:
Let
$$A=(a_{ij})$$
 be an nxn matrix with
eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$.

1.
$$\lambda_1 \lambda_2 \cdots \lambda_n = \det(A)$$

2. $\lambda_1 + \lambda_2 + \cdots + \lambda_n = Sum \text{ of diagonal entries}$
 $= \alpha_{11} + \alpha_{22} + \cdots + \alpha_{nn}$

Ex: If
$$A = \begin{bmatrix} 2 & i \\ i & 2 \end{bmatrix}$$
, then $det(A) = (2X2) - (i)(i) = 3$.

and the sum of the diagonal entries is 2+2 = 4.

The eigenvalues are
$$\lambda_1 = 1$$
, $\lambda_2 = 3$ (check)
Sure enough, $\lambda_1 \lambda_2 = 3$ and $\lambda_1 + \lambda_2 = 4$!

From 1. and our BIG THEOREM, we get

A is invertible
$$\not\in$$
 det $(A) \neq 0$
 $\not\approx \lambda_1 \lambda_2 \cdots \lambda_n \neq 0$
 $\not\Leftrightarrow 0$ is not an eigenvalue of A.

This means we can add the statement

"O is Not an eigenvalue of A"

to our BIG THEOREM!