$\$ 5.2$ - Determinants by Row Operations

Let's answer this question through some examples!
(1) Multiply a row by a scalar t.

Ex: $\begin{array}{rr}A= & {\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]} \\ \text { Net }=1 & \xrightarrow{R_{1} \cdot 2} \quad\left[\begin{array}{ll}6 & 14 \\ 2 & 5\end{array}\right] \\ \text { Det }=2\end{array}$

$$
\begin{array}{r}
{\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right]}
\end{array} \xrightarrow{\left[\begin{array}{cc}
3 & 7 \\
-2 & -5
\end{array}\right]}\left[\begin{array}{c}
\text { Ret }=-1
\end{array}\right.
$$

$$
\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right] \quad \xrightarrow{\text { Ret }} \underset{\text { Net }=t}{\left[\begin{array}{cc}
3 t & 7 t \\
2 & 5
\end{array}\right]}
$$

So it looks like multiplying a cow by t multiplies $\operatorname{det}(A)$ by t as well!
(2) Swapping two rows

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right] \xrightarrow{R_{1} \hat{\imath} R_{2}}\left[\begin{array}{ll}
2 & 5 \\
3 & 7
\end{array}\right] \\
& \text { Dst }=1 \\
& \text { Dst }=-1 \text {. } \\
& B=\left[\begin{array}{cc}
-1 & 4 \\
5 & 1
\end{array}\right] \xrightarrow{R_{1} \hat{\imath} R_{2}}\left[\begin{array}{cc}
5 & 1 \\
-1 & 4
\end{array}\right] \\
& \text { set }=-21 \\
& \text { set }=21
\end{aligned}
$$

So it looks like swapping two rows multiplies $\operatorname{det}(A)$ by -1
(3) Adding a multiple of one row to another row.

Ex:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right] \xrightarrow{R_{1}+2 R_{2}}\left[\begin{array}{ll}
7 & 17 \\
2 & 5
\end{array}\right] \\
& \text { Dep }=1 \\
& \text { set }=1 \\
& {\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right] \xrightarrow{R_{2}-3 R_{1}}\left[\begin{array}{cc}
3 & 7 \\
-7 & -16
\end{array}\right]} \\
& \text { Dep }=1 \\
& {\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right] \xrightarrow{R_{1}+201 R_{2}}\left[\begin{array}{cc}
405 & 1012 \\
2 & 5
\end{array}\right]} \\
& \text { Dst }=1
\end{aligned}
$$

So it looks like adding/ subtracting a multiple of one row from another doesn't affect $\operatorname{det}(A)$!

These facts are extremely useful for computing determinants! Why? Let's see!

Ex: If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 9 \\ 3 & 6 & 5\end{array}\right]$, compute $\operatorname{det}(A)$.

Solution: OKay, this looks bad...

BUT as long as we keep track of how $\operatorname{det}(A)$ is affected, we can apply EROs to simplify A!

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 5 & 9 \\
3 & 6 & 5
\end{array}\right] \underbrace{\sim}_{\text {Aet }(A) \text { doesn't }} \underset{R_{2}-2 R_{1}}{R_{3}-3 R_{1}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 3 \\
0 & 0 & -4
\end{array}\right]
$$

This new matrix has the same determinant as A, but it has one new feature: it's upper triangular!

Therefore its determinant is the product of its diagonal entries: $\operatorname{det}=(1)(1)(-4)=-4$.

But this means that $\operatorname{det}(A)=-4$ as well!!

This gives us a new strategy for finding $\operatorname{det}(A)$:
(1) Put A into REF using EROs
(2) REF (A) is upper-triangular, so its determinant is the product of its diagonal entries.
(3) Work back through your EROs to find $\operatorname{det}(A)$.

Exi If $A=\left[\begin{array}{ccc}2 & 4 & 6 \\ 3 & 6 & 4 \\ 5 & 14 & 20\end{array}\right]$, find $\operatorname{det}(A)$.

Solution:
det is multiplied
by $1 / 2$
Let is unchanged.

$$
A=\left[\begin{array}{ccc}
2 & 4 & 6 \\
3 & 6 & 4 \\
5 & 14 & 20
\end{array}\right] \sim R_{1} \cdot \frac{1}{2}\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 6 & 4 \\
5 & 14 & 20
\end{array}\right] \begin{aligned}
& \sim \\
& R_{2}-3 R_{1} \\
& R_{3}-5 R_{1}
\end{aligned}
$$

$$
\begin{gathered}
\text { deft is multiplied } \\
{\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 0 & -5 \\
0 & 4 & 5
\end{array}\right] \stackrel{R_{2} \uparrow R_{3}}{\sim}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & -5
\end{array}\right]_{\text {(REF })}}
\end{gathered}
$$

The determinant of the REF is $(1)(4)(-5)=-20$

To undo our ERO changes, we need to multiply by (-1) and multiply by 2 .

$$
\therefore \operatorname{det}(A)=(-20)(-1)(2)=40
$$

Ex: If $A=\left[\begin{array}{cccc}1 & 4 & 1 & 3 \\ 3 & 12 & 6 & 8 \\ -1 & -7 & 1 & 1 \\ 2 & 8 & 2 & 7\end{array}\right]$ find $\operatorname{det}(A)$.
Solution:

$$
\begin{aligned}
& \text { union: } \\
& A=\left[\begin{array}{cccc}
1 & 4 & 1 & 3 \\
3 & 12 & 6 & 8 \\
-1 & -7 & 1 & 1 \\
2 & 8 & 2 & 7
\end{array}\right] \underset{R_{2}-3 R_{1}}{\sim} \begin{array}{ccc}
\text { No change } \\
R_{3}+R_{1}-2 R_{1}
\end{array}\left[\begin{array}{cccc}
1 & 4 & 1 & 3 \\
0 & 0 & 3 & -1 \\
0 & -3 & 2 & 4 \\
0 & 0 & 0 & 1
\end{array}\right] \sim R_{2} \uparrow R_{3} \\
& \sim
\end{aligned}
$$

So, $\operatorname{det}(A)=(-9)(-1)=9$

Properties of Determinants

Theorem: Let A, B be $n \times n$ matrices.
(1) A is invertible if and only if $\operatorname{det}(A) \neq 0$.
(2) $\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(A)$
(3) If $t \in \mathbb{R}$, then $\operatorname{det}(t A)=t^{n} \operatorname{det}(A)$
(4) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(5) If A is invertible, $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$

We can actually use (4) to get a slick proof of (5):

If A is invertible, then $A A^{-1}=I$.
Thus, $\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1$
But $\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)$ by (4), so

$$
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1 \Rightarrow \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Note: (4) is also extremely useful for showing that certain matrices are invertible.

Ex: If A, B are $n \times n$ matrices and $A B$ is invertible, then both A and B are invertible.

Proof: If $A B$ is invertible, then $\operatorname{det}(A B) \neq 0$.
Hmm... but $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$, so $\operatorname{det}(A) \operatorname{det}(B) \neq 0$. This means $\operatorname{det}(A) \neq 0$ and $\operatorname{det}(B) \neq 0$, so A and B are invertible!

