§ 3.5 - Inverse Matrices and Mappings Consider the map $Ro: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ that rotates vectors counterclockwise by O radians, We can "undo" this transformation by applying the map $R_{-\theta}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ (rotate vectors by O clockwise). That is, $\left(\mathsf{R}_{o} \circ \mathsf{R}_{-o} \right) \left(\mathsf{x}_{1} \mathsf{x}_{z} \right) = \left(\mathsf{R}_{-o} \circ \mathsf{R}_{o} \right) \left(\mathsf{x}_{1} \mathsf{x}_{z} \right) = \left(\mathsf{x}_{1} \mathsf{x}_{z} \right).$ for all vectors x, so Roo R-o = R-o Ro = id Definition: A linear map $L: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is invertible if there is a linear map $M: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that

$$M \circ L = L \circ M = id.$$

We say that M is the inverse of L and write $M = L^{-1}$.

Ex: From above, we have that Ro is invertible and
$$R_0^{-1} = R_{-0}$$
.

Ex: If
$$\operatorname{Refl_{n}}^{i}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$$
 is a reflection over a
line, then $\operatorname{Refl_{n}}^{i} \circ \operatorname{Refl_{n}}^{i} = \operatorname{id}$ (reflecting twice returns
the original vector).
Thus, $\operatorname{Refl_{n}}^{i}$ is invertible and $(\operatorname{Refl_{n}}^{-1})^{-1} = \operatorname{Refl_{n}}^{i}$

$$E \times : \quad On \quad assignment \quad 8, \quad you \quad showed \quad that \quad with \\ L(x_1, x_2) = (x_1 + x_2, x_1 + 2x_2), \\ M(x_1, x_2) = (2x_1 - x_2, x_2 - x_1) \\ We \quad get \quad (L \circ M)(x_1, x_2) = (M \circ L)(x_1, x_2) = (x_1, x_2) \\ \end{cases}$$

Also, M is invertible and
$$L^{-1} = M$$
.

Remark:
 If

$$M = L^{-1}$$
, then
 $M \circ L = L \circ M = id$,

 So
 $[M][L] = [M \circ L] = [id] = I$
 $[L][M] = [L \circ M] = [id] = I$

Definition: If A is an n×n matrix, then A is
invertible if there is an h×n matrix B such
that
$$AB = BA = I$$

We say that B is the inverse of A, and write
$$B = A^{-1}.$$

EX: If A = $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$, then
AB = BA = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, so A is invertible and $A^{-1} = B$

Ex.) If
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$, AB = BA = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, so A is invertible and $A^{-1} = B$
Ex.: $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is NOT invertible. Why?
If $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ were its inverse, then
 $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ -d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. No inverse exists.
Properties: Let A, B be non invertible matrices.
(1) The inverse for A is unique.
(2) $(A^{-1})^{-1} = A$.
(3) $(A^{-1})^{-1} = (A^{-1})^{T}$

Proof ;

(1) If C and D are both inverses for A, then
CA = AC = I and DA = AD = I
So C = CI = C(AD) = (CA)D = ID = D
C = D!

(z) Since
$$A^{-1}A = AA^{-1} = I$$
, we have that A is
the inverse of A^{-1} , so $(A^{-1})^{-1} = A$.

(3) We must show that $(AB)(B^{-1}A^{-1}) = (B^{-1}A^{-1})(AB) = I$ Indeed, $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$ $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$ $\therefore (AB)^{-1} = B^{-1}A^{-1}$

Suppose we want to find the inverse X of a ZXZ Matrix A.

Let \vec{X}_1, \vec{X}_2 be the columns of $X: X = [\vec{X}, \vec{X}_2]$ Then

$$AX = I \implies A[\vec{x}, \vec{x}_{z}] = I$$

$$\implies [A\vec{x}, A\vec{x}_{z}] = [\vec{e}, \vec{e}_{z}]$$

$$\implies A\vec{x}_{i} = \vec{e}_{i} \quad \textbf{x} \quad A\vec{x}_{z} = \vec{e}_{z}$$

$$\therefore \text{ We need to solve } [A|\vec{e}_{i}], [A|\vec{e}_{z}]$$
We can solve both systems by putting \vec{e}_{i} and \vec{e}_{z} on
the right hand side!

i.e., reduce $[A|\vec{e}_{i},\vec{e}_{z}] = [A|I]$ to RREF

(see Qy of A6).

Ex: If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix}$$
, then

$$\begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \stackrel{\frown}{=} A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 0 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 1 & 3 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{\frown}{=} 1 \begin{bmatrix} 0 \\$$

The process: To find the inverse of an nxn matrix A ...

- (2) If we get $[I_n|B]$, then A is invertible and $A^{-1} = B$.
- 3 If we don't get In on the left-hand side, then A is Not invertible.

Ex: Find
$$A^{-1}$$
 or explain why A is not invertible.
(a) $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$
(b) $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$

Solution:

$$\begin{array}{c|c} (a) & \left[\begin{array}{cccc} 1 & 2 & | & 0 \\ 2 & 4 & 0 & | \end{array} \right] \\ R_{2} - 2R_{1} & \left[\begin{array}{cccc} 1 & 2 & | & 0 \\ 0 & 0 & | & -2 & | \end{array} \right] (RREF) \end{array}$$

Since we don't have Iz on the left, A is not invertible.

Since we get Is on the left, A is invertible.
Moreover,
$$A^{-1} = \begin{bmatrix} 3 & -2 & -2 \\ -1 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$
.

Note: by the above process, A is invertible if and only if RREF(A) = In. BUT we know from Q5 of Assignment G that this is equivalent to the statements in our "BIG THEOREM" Thus, BIG THEOREM gets an upgrade!

BIG THEOREM (V2): If A is an nummatrix,
then the following are equivalent:
(1) RREF(A) = In
(2) A is invertible
(3) Rank(A) = n
(4) The columns of A are linearly independent
(5)
$$A\vec{x} = \vec{o}$$
 has a unique solution $(\vec{x} \cdot \vec{o})$
(6) Null (A) = $\{\vec{o}\}$
(7) The columns of A span Rⁿ
(8) [A|5] is consistent for all $\vec{b} \in \mathbb{R}^n$.
(9) Col(A) = Rⁿ
(10) Row (A) = Rⁿ
(10) Row (A) = Rⁿ
(11) The columns of A form a basis for Rⁿ.
(12) L is invertible
(13) Range (L) = Rⁿ
(14) Null (L) = $\{\vec{o}\}$