§3.5 - Inverse Matrices and Mappings
Consider the map $R_{\theta}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ that rotates vectors counterclockwise by θ radians,

We can "undo" this transformation by applying the map

$$
\mathbb{R}_{-\theta}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}
$$

(rotate vectors by θ clockwise). That is,

$$
\left(R_{\theta} \circ R_{-\theta}\right)\left(x_{1}, x_{2}\right)=\left(R_{-\theta} \circ R_{\theta}\right)\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right) .
$$

for all vectors \vec{x}, so $R_{\theta} \cdot R_{-\theta}=R_{-\theta} \cdot R_{\theta}=i d$

Definition: A linear map $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is invertible if there is a linear map $M: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ such that

$$
M \cdot L=L \cdot M=i d
$$

We say that M is the inverse of L and write

$$
M=L^{-1}
$$

Ex: From above, we have that R_{θ} is invertible and $R_{\theta}^{-1}=R_{-\theta}$.

Ex: If $\operatorname{Refl} \vec{n}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a reflection over a line, then $\operatorname{Ref}_{\vec{n}}$. Ref in $I_{\vec{n}}=i d$ (reflecting twice returns the original vector).

Thus, $\left.\operatorname{Ref}\right|_{\vec{n}}$ is invertible and $\left(\left.\operatorname{Ref}\right|_{\vec{n}}\right)^{-1}=\operatorname{Ref}_{\vec{n}}$

Ex: On assignment 8, you showed that with

$$
\begin{aligned}
& L\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}+2 x_{2}\right) \\
& M\left(x_{1}, x_{2}\right)=\left(2 x_{1}-x_{2}, x_{2}-x_{1}\right)
\end{aligned}
$$

we get $(L \circ M)\left(x_{1}, x_{2}\right)=(M \circ L)\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)$
$\therefore \quad L$ is invertible and $L^{-1}=M$.
Also, M is invertible and $M^{-1}=L$

Remark: If $M=L^{-1}$, then $M \cdot L=L \cdot M=i d$,
so $[M][L]=[M \cdot L]=[i d]=I$

$$
[L][M]=[L \circ M]=[i d]=I
$$

This allows us to talk about inverses in the matrix world!

Definition: If A is an $n \times n$ matrix, then A is invertible if there is an $n \times n$ matrix B such that

$$
A B=B A=I
$$

We say that B is the inverse of A, and write

$$
B=A^{-1}
$$

Ex: If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]$, then $A B=B A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, so A is invertible and $A^{-1}=B$

Ex: If $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & -1\end{array}\right], B=\left[\begin{array}{ccc}1 / 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & -1\end{array}\right]$, then
$A B=B A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, so A is invertible and $A^{-1}=B$.

Ex: $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is NOT invertible. Why?

If $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ were its inverse, then

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

\therefore No inverse exists.
uh oh... these aren't equal.

Properties: Let A, B be $n \times n$ invertible matrices.
(1) The inverse for A is unique.
(2) $\left(A^{-1}\right)^{-1}=A$.
(3) $(A B)^{-1}=B^{-1} A^{-1}$.
(4) If $t \in \mathbb{R}, t \neq 0$, then $(t A)^{-1}=\frac{1}{t} A^{-1}$.
(5) $\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$

Proof:
(1) If C and D are both inverses for A, then

$$
C A=A C=I \text { and } D A=A D=I
$$

So $C=C I=C(A D)=(C A) D=I D=D$

$$
\therefore C=D!
$$

(2) Since $A^{-1} A=A A^{-1}=I$, we have that A is the inverse of A^{-1}, so $\left(A^{-1}\right)^{-1}=A$.
(3) We must show that $(A B)\left(B^{-1} A^{-1}\right)=\left(B^{-1} A^{-1}\right)(A B)=I$

Indeed, $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I$

$$
\begin{aligned}
& \left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I \\
\therefore & (A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

(4), (5) Exercises

Finding A^{-1}
Suppose we want to find the inverse X of a 2×2 matrix A.

Let \vec{x}_{1}, \vec{x}_{2} be the columns of $X: \quad X=\left[\begin{array}{ll}\vec{x}_{1} & \vec{x}_{2}\end{array}\right]$
Then

$$
\left.\begin{array}{rl}
A X=I \quad A\left[\vec{x}_{1} \vec{x}_{2}\right.
\end{array}\right]=I \quad=\left[A \vec{x}_{1} A \vec{x}_{2}\right]=\left[\begin{array}{ll}
\vec{e}_{1} & \vec{e}_{2}
\end{array}\right]
$$

\therefore we need to solve $\left[A \mid \overrightarrow{e_{1}}\right],\left[A \mid \overrightarrow{e_{2}}\right]$

We can solve both systems by putting \vec{e}_{1} and \vec{e}_{2} on the right hand side!
i.e., reduce $\left[A \mid \vec{e}_{1} \vec{e}_{2}\right]=[A \mid I]$ to RREF (see Q_{4} of A_{6}).

Ex: If $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 3\end{array}\right]$, then

$$
\left[\begin{array}{ll|ll}
1 & 0 & 1 & 0 \\
1 & 3 & 0 & 1
\end{array}\right] \underset{R_{2}-R_{1}}{\sim}\left[\begin{array}{ll|ll}
1 & 0 & 1 & 0 \\
0 & 3 & -1 & 1
\end{array}\right] \underset{R_{2} \cdot \frac{1}{3}}{\sim}\left[\begin{array}{cc|cc}
1 & 0 & 1 & 0 \\
0 & 1 & -1 / 3 & 1 / 3
\end{array}\right]
$$

These are the columns \vec{x}_{1} and \vec{x}_{2} of the inverse matrix!

$$
\therefore \quad A^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-1 / 3 & 1 / 3
\end{array}\right]
$$

Sure enough, $\left[\begin{array}{cc}1 & 0 \\ -1 / 3 & 1 / 3\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 3\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -1 / 3 & 1 / 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Yes! There is nothing going on in the 2×2 setting that cannot be extended to $n \times n$ matrices.

The process: To find the inverse of $a_{n} n \times n$ matrix A...
(1) Put $\left[A \mid I_{n}\right]$ into RREF
(2) If we get $\left[I_{n} \mid B\right]$, then A is invertible and $A^{-1}=B$.
(3) If we don't get In on the left -hand side, then A is NOT invertible.

Ex: Find A^{-1} or explain why A is not invertible.
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$

$$
\text { (b) } A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 1 & 1 \\
1 & 2 & -1
\end{array}\right]
$$

Solution:
(a) $\left[\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 2 & 4 & 0 & 1\end{array}\right] \underset{R_{2}-2 R_{1}}{\sim}\left[\begin{array}{ll|ll}1 & 2 & 1 & 0 \\ 0 & 0 & -2 & 1\end{array}\right] \quad$ (PREF)

Since we don't have I_{2} on the left, A is not invertible.
(b)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 2 & -1 & 0 & 0 & 1
\end{array}\right] \sim R_{3}-R_{1}\left[\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 1
\end{array}\right] \sim} \\
& \sim
\end{aligned} R_{3}(-1)
$$

Since we get I_{3} on the left, A is invertible.

$$
\text { Moreover, } A^{-1}=\left[\begin{array}{ccc}
3 & -2 & -2 \\
-1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right]
$$

Note: by the above process, A is invertible if and only if $\operatorname{RREF}(A)=I_{n}$.

BUT we know from Q5 of Assignment 6 that this is equivalent to the statements in our "BIG THEOREM" Thus, BIG THEOREM gets an upgrade!
$B \mid G$ THEOREM (V2): If A is an $n \times n$ matrix, then the following are equivalent:
(1) $\operatorname{RREF}(A)=I_{n}$
(2) A is invertible
(3) $\operatorname{RanK}(A)=n$
(4) The columns of A are linearly independent
(5) $A \vec{x}=\overrightarrow{0}$ has a unique solution $(\vec{x}=\overrightarrow{0})$
(6) $\operatorname{Null}(A)=\{\overrightarrow{0}\}$
(7) The columns of A span \mathbb{R}^{n}
(8) $[A \mid \vec{b}]$ is consistent for all $\vec{b} \in \mathbb{R}^{n}$.
(9) $\operatorname{Col}(A)=\mathbb{R}^{n}$
(10) $\operatorname{Row}(A)=\mathbb{R}^{n}$
(11) The columns of A form a basis for \mathbb{R}^{n}.
$\left.\begin{array}{l}\text { (12) } L \text { is invertible } \\ \text { (13) } \operatorname{Range}(L)=\mathbb{R}^{n}\end{array}\right\} \begin{aligned} & \text { Here, } L \text { denotes the } \\ & \text { linear map } L(\vec{x})=A \vec{x}\end{aligned}$
linear map $L(\vec{x})=A \vec{x}$
(14) $\operatorname{Null}(L)=\{\overrightarrow{0}\} \quad\}$

