Connection between

Linear function
World

$$L: \mathbb{R}^n \to \mathbb{R}^m \iff [L] \mod n$$

 $L(\vec{x}) = [L]\vec{x}$

(2) closed under scalar multiplication.

Nullspace

If A is an mxn matrix, then the set $Null(A) = \left\{ \vec{x} \in \mathbb{R}^{h} \middle| A \vec{x} = \vec{o} \right\}$

of all solutions to the homogeneous system
$$A\vec{x} = \vec{0}$$

is a subspace of R^{h} .

This is known as the nullspace of A.

Ex: What is the nullspace of
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 5 \end{bmatrix}$$
?

Solution: It's the set of all solutions to
$$A\vec{x} = \vec{0}$$

(i.e., solutions to $[A|\vec{0}]$) which we can obtain

by finding RREF(A).

$$\begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \approx \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} (RREF)$$

If $x_2 = s$ and $x_4 = t$ $(s, t \in \mathbb{R})$, then the solutions are $\vec{x} = \begin{bmatrix} -s - t \\ s \\ -2t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ -2 \\ 1 \end{bmatrix}$, $s, t \in \mathbb{R}$

$$\therefore \text{ Null (A) = Span } \left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} / \begin{bmatrix} -/ \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$$

Well, if
$$L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 is a linear map with matrix
A, then $A\vec{x} = \vec{o}$ if and only if $L(\vec{x}) = \vec{o}$

So Null(A) is the same as

$$\operatorname{Null}(L) = \left\{ \vec{x} \in \mathbb{R}^n \mid L(\vec{x}) = \vec{0} \right\}$$

which we will call the hullspace of L.

Ex: What is the nullspace of the linear map
$$L(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3)?$$

Solution: The matrix for
$$L$$
 is $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

The nullspace of L is the same as Null(A),
which we can get by solving
$$A\vec{x} = \vec{0}$$
.

$$RREF(A) = \begin{bmatrix} I & 0 & -1 \\ 0 & I & I \end{bmatrix} \implies Solution is \vec{X} = t \begin{bmatrix} I \\ -I \\ I \end{bmatrix}, t \in \mathbb{R}$$

$$\therefore Null(L) = Span \{ [-i] \}$$

Г

Column Space of A and Range of L

Recall that the codomain of a linear transformation $L:\mathbb{R}^n \longrightarrow \mathbb{R}^m$ is \mathbb{R}^m , the set that L maps into.

$$\begin{array}{cccc} E_{X} & & & If \quad \overline{V} = \left[\begin{smallmatrix} i \\ 2 \end{smallmatrix} \right], \ \text{then the linear map} \\ \\ Proj_{\overrightarrow{v}} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \quad \text{sends each vector } \overrightarrow{X} \in \mathbb{R}^3 \quad \text{to} \\ \\ Proj_{\overrightarrow{v}} \xrightarrow{X}, \ \text{which is always a multiple of } \overrightarrow{v}. \end{array}$$

So Projv hits all multiples of
$$\vec{v}$$
, but nothing
else (e.g., $\begin{bmatrix} i \\ o \end{bmatrix}$ is not hit by Projv)

Definition: The range of a linear map
$$L: \mathbb{R}^n \to \mathbb{R}^m$$
 is
 $\operatorname{Range}(L) = \{L(\overline{x}) : \overline{x} \in \mathbb{R}^n\},\$

This is the set of vectors in R^m that Lactually hits.

Ex: By the above examples, we have
(i)
$$Range(Proj_{\vec{v}}) = Span\{\vec{v}\}$$

(ii) $Range(Ro) = R^2$
(iii) $Range(Refl_{\vec{n}}) = R^2$

Since $L(\vec{x}) = A\vec{x}$, we have that

 $Range(L) = \left\{ L(\vec{x}) : \vec{X} \in \mathbb{R}^{n} \right\}$ $= \left\{ A\vec{x} : \vec{X} \in \mathbb{R}^{n} \right\}$ = linear combination of columns of A.

$$Col(A) = \{A\vec{x} : \vec{x} \in \mathbb{R}^n\} = Span \{Columns of A\}$$

. If
$$L$$
 is a linear map with matrix A , then
 $Range(L) = Col(A).$

L(
$$x_1, x_2, x_3$$
) = ($x_1 + x_2, x_2 + x_3$)?

Solution: From a previous example, the matrix for

$$L$$
 is $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Thus,
 $Range(L) = Col(A) = Span \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$

EX: If
$$A = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 5 \end{bmatrix}$$
, then

$$Col(A) = Span \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix} \right\}$$

$$Is the column$$

$$Space a subspace of Rn$$

$$just like the nullspace is a Subspace of Rn?$$

$$Yes! In $1.7 we saw that Span {\vec{v}_{i}, ..., \vec{v}_{k}}$$
is always a subspace! So in particular,

$$Col(A) = Span \{ columns of A \} is a subspace.$$

Note: From Chapter 2 we know that a system

$$A\vec{x} = \vec{b}$$
 is consistent if and only if \vec{b} belongs
to Span { columns of A }.

In our new language:

$$A\bar{X} = \bar{D}$$
 is consistent if and only if $\bar{D} \in Col(A)$
[or equivalently, $\bar{D} \in Range(L)$]

In some cases we may be interested in knowing the <u>span of the rows</u> of a matrix.

Definition: If A is an mxn matrix, then
the rowspace of A, Row(A), is the
subspace of Rⁿ spanned by the rows of A
when regarded as column vectors.
Ex: If
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
, then
 $Row(A) = Span\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

Formally,
$$Row(A) = Col(A^{T}) = \{A^{T}\vec{x} \mid \vec{x} \in \mathbb{R}^{m}\}$$

Magic Fact about Row Spaces
EROs don't change the row space!
In particular,
$$Row(A) = Row(RREF(A))$$

$$\underbrace{E_{x}}_{i} \quad \text{If} \quad A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 5 \end{bmatrix}, \quad \text{then}$$

$$RREF(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad S_0$$

$$Row(A) = Row(RREF(A)) = Span\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

This is clearly NOT a basis for Row(A). Is there some way we can obtain a basis directly?

	Subspace	Subspace of	How to get a Basis
·	Col(A) = Range(L)	\mathbb{R}^m (codomain)	Use the columns of A that have leading 1's in RREF(A)
	$Row(A) = Col(A^{\tau})$	\mathbb{R}^n (domain)	Use the non-zero rows of RREF(A)
	Null(A) = Null(L)	R ^h (domain)	Solve $A\vec{x} = \vec{o}$ and use the vectors on each parameter.

EX: If
$$A = \begin{bmatrix} 1 & 4 & 1 \\ 2 & 9 & 5 \\ 3 & 13 & 6 \end{bmatrix}$$
 and $RREF(A) = \begin{bmatrix} 1 & 0 & -11 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$,
find bases for Col(A), Row(A), and Null(A).

Solution: Since Columns I and Z have pivots in RREF(A),

$$\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 9 \\ 13 \end{bmatrix} \right\}$$
is a basis for Col(A).

Since rows 1 and 2 of RREF(A) are non-zero,

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix} \right\}$$
is a basis for Row(A).
The solution to $A\vec{x} = \vec{0}$ is $\vec{x} = t \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$, $t \in \mathbb{R}$, So

$$\left\{ \begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix} \right\}$$
is a basis for Null(A).
Ex: If $A = \begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 1 & 2 & 1 & 8 & 10 \\ 2 & 4 & 1 & 11 & 14 \end{bmatrix}$
and
RREF(A) = $\begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 1 & 2 & 1 & 8 & 10 \\ 2 & 4 & 1 & 11 & 14 \end{bmatrix}$

RREF(A) = $\begin{bmatrix} 1 & 2 & 0 & 3 & 4 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, find bases for
Col(A), Row(A), and Null(A).
Solution: A basis for Col(A) is $\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 5 \\ 4 \end{bmatrix} \right\}$
A basis for Row(A) is $\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 5 \\ 4 \end{bmatrix} \right\}$

Note: If there are no parameters in the solution to $A\vec{x} = \vec{o}$, then $\underline{Null}(A) = \{\vec{o}\}$. In this case we say that the nullspace of A is trivial.

Observations:

(1) Col(A) contains a basis vector for every pivot in RREF(A). Thus, $\dim Col(A) = Rank(A).$

(2)
$$Row(A)$$
 contains a basis vector for every pivot
in $RREF(A)$. Thus,
 $dim Row(A) = Rank(A)$.

(3) Null(A) contains a basis vector for every
parameter in the solution to
$$A\vec{x} = \vec{o}$$
. Since
there are $h - Rank(A)$ parameters,

This leads us to the following FUNDAMENTAL result:

Theorem [Rank-Nullity Theorem]: If A is an $M \times n$ matrix, then Rank(A) + Jim Null(A) = n.

Ex: A 5x4 matrix A has rank 3, what is the dimension of its nullspace?

Solution: Since
$$Rank(A) + dim Null(A) = 4$$
, we have that $dim Null(A) = 4 - Rank(A)$
= 4 - 3 = 1.

Solution: Note that since Rank(A) + dim Null(A) = 17, We have Rank(A) = 17 - dim Null(A) = 17 - 14= 3

 \therefore dim Col(A) = Rank(A) = 3

$$Rank(A) = 6 - dim Null(A) = 6 - 1 = 5$$

[In fact this argument shows that the columns
of A are linearly independent if and only if
dim Null(A) = 0 (i.e., Null(A) =
$$\{\vec{o}\}\)$$
. This makes
sense: if there were some non-zero $\vec{x} \in Null(A)$,
then we would have $A\vec{x} = \vec{o}$, meaning there is
a non-trivial linear combination of A's columns
that equals \vec{o} !]

Cute Application: If A is an mxn matrix,
then
$$Rank(A) = Rank(A^T)$$
.

Why? Because
$$Rank(A) = dim Row(A)$$

and $Rank(A^{T}) = dim Col(A^{T})$.

Since $Row(A) = Col(A^T)$, we get $Rank(A) = dim Row(A) = dim Col(A^T) = Rank(A^T)$.