$\xi 3.4$ - Special Subspaces of Systems and Mappings
The key idea from Chapter 3: there is an intimate connection between

$$
\left.\begin{array}{rl}
\begin{array}{c}
\text { Linear function } \\
\text { World }
\end{array} & \text { and } \\
L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} & \leftrightarrow[L] m \times n \\
\text { World. }
\end{array}\right] \begin{gathered}
\text { Matrix } \\
L(\vec{x})
\end{gathered}
$$

How do our Chapter 2 notions in matrix world (homogeneous systems, rank, etc...) match with ideas in linear function world? We can better understand such connections by studying subspaces associated to L and its corresponding matrix.

Throughout, $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ will be a linear map and A will be its $m \times n$ matrix $[L]$.

Recall: A subspace of \mathbb{R}^{n} is a non-empty subset of \mathbb{R}^{n} that is
(1) closed under addition, and
(2) closed under scalar multiplication.

Nullspace

If A is an $m \times n$ matrix, then the set

$$
\operatorname{Null}(A)=\left\{\vec{x} \in \mathbb{R}^{n} \mid A \vec{x}=\overrightarrow{0}\right\}
$$

of all solutions to the homogeneous system $A \vec{x}=\overrightarrow{0}$ is a subspace of \mathbb{R}^{n}.

This is known as the nullspace of A.

Ex: What is the null space of $A=\left[\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 5\end{array}\right]$?

Solution: It's the set of all solutions to $A \vec{x}=\overrightarrow{0}$ (ie., Solutions to $[A \mid \vec{O}]$) which we can obtain
by finding RREF (A).

$$
\left.\begin{array}{c}
{\left[\begin{array}{llll}
1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 5
\end{array}\right] \underset{R_{3}-R_{1}}{\sim}\left[\begin{array}{llll}
1 & 1 & 1 & 3 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{array}\right] \stackrel{R_{1}-R_{2}}{\sim}} \\
R_{3}-R_{2}
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]_{\text {(TREF) }} \quad .
$$

If $x_{2}=s$ and $x_{4}=t \quad(s, t \in \mathbb{R})$, then the solutions are $\vec{x}=\left[\begin{array}{c}-s-t \\ s \\ -2 t \\ t\end{array}\right]=s\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 0 \\ -2 \\ 1\end{array}\right], s, t \in \mathbb{R}$

$$
\therefore \operatorname{Null}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
-2 \\
1
\end{array}\right]\right\}
$$

What is the analogue of
nullspace in linear function world??

Well, if $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear map with matrix
A, then $A \vec{x}=\overrightarrow{0}$ if and only if $L(\vec{x})=\overrightarrow{0}$

So $\operatorname{Null}(A)$ is the same as

$$
\operatorname{Null}(L)=\left\{\vec{x} \in \mathbb{R}^{n} \mid L(\vec{x})=\overrightarrow{0}\right\}
$$

which we will call the nullspace of L.

Ex: What is the nullspace of the linear map

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}\right) ?
$$

Solution: The matrix for L is $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.

The nullspace of L is the same as Null (A) which we can get by solving $A \vec{x}=\overrightarrow{0}$.

$$
\begin{aligned}
& \operatorname{RREF}(A)=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right] \Rightarrow \text { Solution is } \vec{x}=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], t \in \mathbb{R} \\
\therefore & \operatorname{Null}(L)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Column Space of A and Range of L
Recall that the codomain of a linear transformation $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is \mathbb{R}^{m}, the set that L maps into.

But does L actually hit every vector in its codomain?

Ex: If $\vec{V}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, then the linear map
Proja: : $\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ sends each vector $\vec{X} \in \mathbb{R}^{3}$ to
$\operatorname{Proj}_{\vec{v}} \vec{x}$, which is always a multiple of \vec{v}.

So Proj\vec{v} hits all multiples of \vec{v}, but nothing else (e.g., $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ is not hit by $\operatorname{Proj}_{\vec{v}}$)

Ex: Thinking geometrically, its easy to see that rotations, reflections, and stretches/ compressions on \mathbb{R}^{2} do hit every vector in their codomain!

Definition: The range of a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is

$$
\operatorname{Range}(L)=\left\{L(\vec{x}): \vec{x} \in \mathbb{R}^{n}\right\} \text {. }
$$

This is the set of vectors in \mathbb{R}^{m} that L actually hits.

Ex: By the above examples, we have
(i) Range $(\operatorname{Proj} \vec{v})=\operatorname{Span}\{\vec{v}\}$
(ii) $\operatorname{Range}\left(R_{\theta}\right)=\mathbb{R}^{2}$
(iii) $\operatorname{Range}\left(\operatorname{Ref}(\stackrel{\rightharpoonup}{n})=\mathbb{R}^{2}\right.$

What is the analogue of
range in the matrix world??

Since $L(\vec{x})=A \vec{x}$, we have that

$$
\begin{aligned}
\operatorname{Range}(L)= & \left\{L(\vec{x}): \stackrel{\rightharpoonup}{x} \in \mathbb{R}^{n}\right\} \\
= & \{\underbrace{A \vec{x}}: \vec{x} \in \mathbb{R}^{n}\} \\
& =\begin{array}{l}
\text { linear combination of } \\
\text { columns of } A
\end{array}
\end{aligned}
$$

$$
=\left\{\begin{array}{cl}
\text { all } & \text { linear combinations } \\
\text { of the columns of } A
\end{array}\right\}=\operatorname{Span}\{\text { columns of } A\}
$$

Let's give this last set a proper name!

Definition: The column space of an $m \times n$ matrix A is

$$
\operatorname{Col}(A)=\left\{A \vec{x}: \tilde{x} \in \mathbb{R}^{n}\right\}=\operatorname{Span}\{\text { columns of } A\}
$$

\therefore If L is a linear map with matrix A, then

$$
\operatorname{Range}(L)=\operatorname{Col}(A) \text {. }
$$

Ex: What is the range of the linear map

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{2}+x_{3}\right) ?
$$

Solution: From a previous example, the matrix for L is $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$. Thus,

$$
\operatorname{Range}(L)=\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{ll}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

Ex: If $A=\left[\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 5\end{array}\right]$, then

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right]\right\}
$$

Is the column
space a subspace of \mathbb{R}^{m} just like the nullspace is a subspace of \mathbb{R}^{n} ?

Yes! In $I_{1.7}$ we saw that $\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$
is always a subspace! So in particular,
$\operatorname{Col}(A)=\operatorname{Span}\{$ columns of $A\}$ is a subspace.

Note: From Chapter 2 we know that a system $A \vec{x}=\vec{b}$ is consistent if and only if \vec{b} belongs to Span $\{$ columns of $A\}$.

In our new language:
$A \vec{x}=\vec{b}$ is consistent if and only if $\vec{b} \in \operatorname{Col}(A)$

$$
[\text { or equivalently, } \vec{b} \in \operatorname{Range}(L)]
$$

Row space
In some cases we may be interested in knowing the span of the rows of a matrix.

Definition: If A is an $m \times n$ matrix, then the rowspace of $A, \operatorname{Row}(A)$, is the subspace of \mathbb{R}^{n} spanned by the rows of A when regarded as column vectors.

Ex: If $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$, then

$$
\operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Formally, $\operatorname{Row}(A)=\operatorname{Col}\left(A^{\top}\right)=\left\{A^{\top} \vec{x} \mid \vec{x} \in \mathbb{R}^{m}\right\}$

Magic Fact about Row Spaces
EROs dort change the row space!
In particular, $\operatorname{Row}(A)=\operatorname{Row}(\operatorname{RREF}(A))$

Ex: If $A=\left[\begin{array}{llll}1 & 1 & 1 & 3 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & 2 & 5\end{array}\right]$, then

$$
\begin{aligned}
& \operatorname{RREF}(A)=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right], \text { So } \\
& \operatorname{Row}(A)=\operatorname{Row}(\operatorname{RREF}(A))=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
\end{aligned}
$$

This is clearly NOT a basis for $\operatorname{Row}(A)$.
Is there some way we can obtain a basis directly?

Subspace	Subspace of	How to get a Basis
$\operatorname{Col}(A)=$ Range (L)	\mathbb{R}^{m} (codomain)	Use the columns of A that have leading 1 's in $\operatorname{RREF}(A)$
$\operatorname{Row}(A)=\operatorname{Col}\left(A^{\top}\right)$	\mathbb{R}^{n} (domain)	Use the non-zero rows of $\operatorname{RREF}(A)$
$\operatorname{Null}(A)=\operatorname{Null}(L)$	\mathbb{R}^{n} (domain)	Solve A $\vec{x}=\vec{o}$ and use the vectors on each Parameter.

Ex: If $A=\left[\begin{array}{ccc}1 & 4 & 1 \\ 2 & 9 & 5 \\ 3 & 13 & 6\end{array}\right]$ and $\operatorname{RREF}(A)=\left[\begin{array}{ccc}1 & 0 & -11 \\ 0 & 1 & 3 \\ 0 & 0 & 0\end{array}\right]$,
find bases for $\operatorname{Col}(A), \operatorname{Row}(A)$, and $\operatorname{Null}(A)$.

Solution: Since Columns 1 and z have pivots in RREF (A),

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{c}
4 \\
9 \\
13
\end{array}\right]\right\}
$$

is a basis for $\operatorname{Col}(A)$.

Since rows 1 and 2 of $\operatorname{RREF}(A)$ are non-zero, $\left\{\left[\begin{array}{c}1 \\ 0 \\ -11\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]\right\}$ is a basis for $\operatorname{Row}(A)$.

The solution to $A \vec{x}=\overrightarrow{0}$ is $\vec{x}=t\left[\begin{array}{c}11 \\ -3 \\ 1\end{array}\right], t \in \mathbb{R}$, so $\left\{\left[\begin{array}{c}11 \\ -3 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{Null}(A)$.

Ex: If $A=\left[\begin{array}{ccccc}1 & 2 & 0 & 3 & 4 \\ 1 & 2 & 1 & 8 & 10 \\ 2 & 4 & 1 & 11 & 14\end{array}\right]$ and

$$
\operatorname{RREF}(A)=\left[\begin{array}{lllll}
1 & 2 & 0 & 3 & 4 \\
0 & 0 & 1 & 5 & 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \text {, find bases for }
$$

$\operatorname{Col}(A), \operatorname{Row}(A)$, and $\operatorname{Null}(A)$.

Solution: A basis for $\operatorname{Col}(A)$ is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$
A basis for $\operatorname{Row}(A)$ is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 5 \\ 6\end{array}\right]\right\}$

The general solution for $A \vec{x}=\overrightarrow{0}$ is

$$
\vec{X}=r\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-3 \\
0 \\
-5 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-4 \\
0 \\
-6 \\
0 \\
1
\end{array}\right], r, s, t \in \mathbb{R}
$$

So a basis for Null (A) is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ -5 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ -6 \\ 0 \\ 1\end{array}\right]\right\}$

Note: If there are no parameters in the solution to $A \vec{x}=\overrightarrow{0}$, then $\operatorname{Null}(A)=\{\overrightarrow{0}\}$. In this case we say that the nullspace of A is trivial.

Observations:
(1) $\operatorname{Col}(A)$ contains a basis vector for every pivot in RREF (A). Thus,

$$
\operatorname{dim} \operatorname{Col}(A)=\operatorname{Rank}(A) .
$$

(2) Row (A) contains a basis vector for every pivot in RREF (A). Thus,

$$
\operatorname{dim} \operatorname{Row}(A)=\operatorname{Rank}(A) \text {. }
$$

(3) Null (A) contains a basis vector for every parameter in the solution to $A \vec{x}=\overrightarrow{0}$. Since there are $n-\operatorname{Rank}(A)$ parameters,

$$
\operatorname{dim} \operatorname{Null}(A)=n-\operatorname{Rank}(A)
$$

\# of columns.

This leads us to the following FUNDAMENTAL result:
Theorem [Rank-Nullity Theorem]:
If A is an $m \times n$ matrix, then

$$
\operatorname{Rank}(A)+\operatorname{dim} N u l l(A)=n .
$$

Ex: A 5×4 matrix A has rank 3, what is the dimension of its nullspace?

Solution: Since $\operatorname{Rank}(A)+\operatorname{dim} \operatorname{Null}(A)=4$, we have that $\operatorname{dim} \operatorname{Null}(A)=4-\operatorname{Rank}(A)$

$$
=4-3=1
$$

Ex: $A 10 \times 17$ matrix A has a 14 -dimensional nullspace. What is $\operatorname{dim} \operatorname{Col}(A)$?

Solution: Note that since $\operatorname{Rank}(A)+\operatorname{dim} \operatorname{Null}(A)=17$,
we have $\operatorname{Rank}(A)=17-\operatorname{dim} \operatorname{Null}(A)$

$$
\begin{aligned}
& =17-14 \\
& =3
\end{aligned}
$$

$$
\therefore \operatorname{dim} \operatorname{Col}(A)=\operatorname{Rank}(A)=3
$$

Ex: A 6×6 matrix A has 1 -dimensional
nullspace. Are the columns of A linearly independent?

Solution: By the Rank-Nullity Theorem,

$$
\operatorname{Rank}(A)=6-\operatorname{dim} \operatorname{Null}(A)=6-1=5
$$

Thus, $\operatorname{Rank}(A)<$ \# of columns $=6$, so by the results of Chapter 2, the columns are linearly dependent.
[In fact this argument shows that the columns of A are linearly independent if and only if $\operatorname{dim} \operatorname{Null}(A)=0$ (ie, $\operatorname{Null}(A)=\{\overrightarrow{0}\}$). This makes Sense: if there were some non-zero $\vec{x} \in \operatorname{Null}(A)$, then we would have $A \vec{x}=\overrightarrow{0}$, meaning there is a non-trivial linear combination of A's columns that equals $\widetilde{0}!]$

Cute Application: If A is an $m \times n$ matrix, then $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{\top}\right)$.

Why? Because $\operatorname{Rank}(A)=\operatorname{dim} \operatorname{Row}(A)$
and $\operatorname{Rank}\left(A^{\top}\right)=\operatorname{dim} \operatorname{Col}\left(A^{\top}\right)$.

Since $\operatorname{Row}(A)=\operatorname{Col}\left(A^{\top}\right)$, we get

$$
\operatorname{Rank}(A)=\operatorname{dim} \operatorname{Row}(A)=\operatorname{dim} \operatorname{Col}\left(A^{\top}\right)=\operatorname{Rank}\left(A^{\top}\right) \text {. }
$$

