§3.3-Geometrical Transformations

Many linear transformations in \mathbb{R}^{2} and \mathbb{R}^{3} are easy to visualize, and play an important role in modelling and structural analysis.

Here we record several such transformations and find their matrices. The name of the game?
Determine what happens to the standard basis vectors!

Stretches
Let s, t be >0 and consider the linear transformation L that stretches/contracts vectors $\vec{X} \in \mathbb{R}^{2}$ by S in the x_{1}-direction and t in the x_{2}-direction.

What is [L]?

$$
\text { Well... }\left\{\begin{array}{l}
L\left(\overrightarrow{e_{1}}\right)=s \overrightarrow{e_{1}}=\left[\begin{array}{l}
s \\
0
\end{array}\right] \\
L\left(\overrightarrow{e_{2}}\right)=t \overrightarrow{e_{2}}=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
\end{array}\right.
$$

$$
\Longrightarrow \quad[L]=\left[\begin{array}{ll}
S & 0 \\
0 & t
\end{array}\right]
$$

Ex: If $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a stretch by 2 in the x_{1}-direction and a contraction by $\frac{1}{2}$ in the x_{2} - direction, then $[L]=\left[\begin{array}{cc}2 & 0 \\ 0 & 1 / 2\end{array}\right]$

If L stretches/contracts the $x_{1}-$ and x_{2}-directions by the same factor t (so $[L]=\left[\begin{array}{cc}t & 0 \\ 0 & t\end{array}\right]$), we simply call L a stretch/contraction by a factor of t.

In \mathbb{R}^{3} : if L stretches or contracts the $x_{1}-$, $x_{2}-$, and x_{3}-directions by r, s, t, respectively, then

$$
[L]=\left[\begin{array}{lll}
r & 0 & 0 \\
0 & s & 0 \\
0 & 0 & t
\end{array}\right]
$$

One particular example: a stretch by a factor of 1 leaves every vector \bar{x} unchanged. This transformation id: $\mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is given by

$$
i d(\vec{x})=\vec{x},
$$

and for this reason we call it the identity map.

Since id $\left(\overrightarrow{e_{i}}\right)=\vec{e}_{i}$, its matrix is

$$
[i d]=\left[\begin{array}{llll}
\overrightarrow{e_{1}} & \overrightarrow{e_{2}} & \cdots & \overrightarrow{e_{n}}
\end{array}\right]=I_{n}
$$

Projections / Perpendiculars
In $\S 1.4$ we saw that if $\vec{x} \neq \overrightarrow{0}$, then

$$
\begin{aligned}
& \operatorname{Proj}_{\vec{x}}(\vec{y}+\vec{z})=\operatorname{Proj}_{\vec{x}} \vec{y}+\operatorname{Proj}_{\vec{x}} \vec{z} \\
& \operatorname{Proj}_{\vec{x}}(t \vec{y})=t \operatorname{Proj}_{\mathrm{x}} \vec{y}
\end{aligned}
$$

for all $\vec{y}, \vec{z} \in \mathbb{R}^{n}$ and all $t \in \mathbb{R}$.

Thus, the map $\xrightarrow[\operatorname{Proj}_{\vec{x}}]{ }: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ that sends \vec{y} to $\operatorname{Proj}_{\vec{x}} \vec{y}$ is linear.

Its matrix $\left[P_{r o j}^{\vec{x}}\right]$ can be found by calculating $\operatorname{Proj}_{\vec{x}} \overrightarrow{e_{1}}, \quad \operatorname{Proj}_{\vec{j}} \overrightarrow{e_{2}}, \cdots, \quad \operatorname{Proj}_{\vec{x}} \overrightarrow{e_{n}} \quad\left(\right.$ see Q_{2} of Assignment 8$)$

Rotations
Let $R_{\theta}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the transformation that rotates all vectors counterclockwise about the origin by θ radians.

Note: It doesn't matter if a vector is stretched and then rotated, or rotated and then stretched. (i.e, $R_{\theta}(t \vec{x})=t R_{\theta}(\vec{x})$, so R_{θ} satisfies (L2))

Furthermore, if \vec{x} and \vec{y} are vectors, then $\vec{x}+\vec{y}$ rotates with \vec{x} and \vec{y} as we apply R_{θ}

So it doesn't matter if we first add and then rotate, or rotate and then add (i.e., $R_{\theta}(\vec{x}+\hat{y})=R_{\theta}(\vec{x})+R_{\theta}(\vec{y})$)
\therefore (LI) holds, so R_{θ} is linear!

What is $\left[R_{\theta}\right]$? Answering this question is easy
for some angles:

$$
R_{\pi / 2}\left(\overrightarrow{e_{1}}\right)=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad R_{\pi / 2}\left(\overrightarrow{e_{2}}\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \Rightarrow\left[R_{\pi / 2}\right]=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

$$
R_{\pi}\left(\vec{e}_{1}\right)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], R_{\pi}\left(\vec{e}_{2}\right)=\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \Rightarrow\left[R_{\pi}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

What about for a general θ ?
From our knowledge of the unit circle, we know that $R_{\theta}\left(\vec{e}_{1}\right)=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$

What's $R_{\theta}\left(\vec{e}_{2}\right)$? It should be the same as

$$
\begin{aligned}
R_{\theta+\pi / 2}\left(\vec{e}_{1}\right) & \left.=\left[\begin{array}{c}
\cos (\theta+\pi / 2) \\
\sin (\theta+\pi / 2)
\end{array}\right] \quad \begin{array}{r}
\text { (Note: } \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
\sin (\alpha+\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta)
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos \theta \cos (\pi / 2)-\sin \theta \sin (\pi / 2) \\
\sin \theta \cos (\pi / 2)+\cos \theta \sin (\pi / 2)
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos \theta \cdot 0-\sin \theta \cdot 1 \\
\sin \theta \cdot 0+\cos \theta \cdot 1
\end{array}\right]=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]
\end{aligned}
$$

Thus, $\left[R_{\theta}\right]=\left[R_{\theta}\left(\vec{e}_{1}\right) R_{\theta}\left(\overrightarrow{e_{2}}\right)\right]=\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

Ex: Determine $\left[R_{2 \pi / 3}\right]$ and use it to find the vector obtained by rotating $\vec{x}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$ by $\frac{2 \pi}{3}$ radians counterclockwise.

Solution

$$
\begin{aligned}
{\left[R_{\frac{2}{3}}\right] } & =\left[\begin{array}{cc}
\cos (2 \pi / 3) & -\sin (2 \pi / 3) \\
\sin (2 \pi / 3) & \cos (2 \pi / 3)
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right]
\end{aligned}
$$

We have $R_{\frac{2 \pi}{3}}\left(\left[\begin{array}{l}2 \\ 4\end{array}\right]\right)=\left[R_{2 \frac{\pi}{3}}\right]\left[\begin{array}{l}2 \\ 4\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
-1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
-1-2 \sqrt{3} \\
\sqrt{3}
\end{array}\right]
\end{aligned}
$$

Reflection Over a Line in \mathbb{R}^{2}

Let's say we have a line in \mathbb{R}^{2} that passes through the origin, and suppose \vec{h} is a normal vector for the line $($ so $\vec{n} \cdot \vec{d}=0)$

If $\operatorname{Ref} l_{\vec{n}}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ denotes the map that reflects each vector \vec{x} over this line, then

$$
\operatorname{Ref}_{\vec{n}}(\vec{x})=\vec{x}-2 \operatorname{Proj}_{\vec{n}}(\vec{x})
$$

Since $\left.\operatorname{Ref}\right|_{\vec{n}}(\vec{x})=\vec{x}-2 \operatorname{Proj}_{\tilde{n}}(\vec{x})$

$$
=\underbrace{\left(i d-2 P_{r_{0} j_{n}}\right)}(\vec{x})
$$

Since id and Projn are linear, so is this!
we have that $\left.\operatorname{Ref}\right|_{\vec{n}}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is linear, and

$$
\left[\operatorname{Refl}_{j}\right]=\left[i d-2 \operatorname{Proj}_{\vec{n}}\right]=I-2\left[\operatorname{Proj}_{\tilde{r}}\right]
$$

Ex: Find the matrix that represents a reflection across the x_{2}-axis in \mathbb{R}^{2}.

Solution: We can see right away that this map sends \vec{e}_{1} to $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$, and \vec{e}_{2} to $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

So we get $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$.
Let's see if our above approach gives the same result!
Since $\bar{n}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is \perp to this line, were looking for

$$
\left[\operatorname{Refl}_{\tilde{n}}\right]=I-2\left[\operatorname{Pro}_{j_{n}}\right]
$$

We have

$$
\operatorname{Proj} \vec{n}\left(\vec{e}_{1}\right)=\frac{1}{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \operatorname{Proj}_{\tilde{n}}\left(\vec{e}_{2}\right)=\frac{0}{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

This means $\left[P_{r o j}^{j_{\hat{h}}}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, and hence

$$
\begin{aligned}
{\left[\left.\operatorname{Ref}\right|_{\vec{n}}\right]=I-2\left[\operatorname{Proj}_{\vec{n}}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-2\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \text { (Yay! It's the same!) }
\end{aligned}
$$

Ex: Find the matrix that represents a reflection across the line $\vec{x}=t\left[\begin{array}{l}1 \\ 1\end{array}\right], t \in \mathbb{R}$

Use this matrix to find the vector obtained by reflecting $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ in this line.

Solution: $\vec{n}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is a normal vector.

We have $\operatorname{Proj}_{\vec{n}} \vec{e}_{1}=\frac{1}{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ -1 / 2\end{array}\right]$

$$
\operatorname{Proj}_{n} \vec{e}_{2}=\frac{-1}{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right]
$$

So $\left[\right.$ Proj$\left._{\vec{n}}\right]=\left[\begin{array}{cc}1 / 2 & -1 / 2 \\ -1 / 2 & 1 / 2\end{array}\right]$, and hence

$$
[\operatorname{Ref} \mid \vec{n}]=I-2[\operatorname{Proj} \vec{n}]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-2\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Thus, $\operatorname{Refl} \stackrel{\tilde{n}}{ }\left(\left[\begin{array}{l}2 \\ 1\end{array}\right]\right)=[\operatorname{Ref} \mid \stackrel{n}{n}]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

Reflection Over a Plane in \mathbb{R}^{3}
Let's say we have a plane $\vec{n} \cdot \vec{x}=0$ in \mathbb{R}^{3} that passes through the origin and has normal vector \vec{n}.

If now Reflan: $\mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ denotes the map that reflects every vector \vec{x} over this plane, then

$$
\operatorname{Refl}_{\stackrel{n}{n}}(\vec{x})=\vec{x}-2 \operatorname{Proj}_{\vec{n}}(\vec{x})
$$

This means once again,

$$
[\operatorname{Ref} \mid \vec{n}]=I-2\left[\operatorname{Proj}{ }_{n}\right]
$$

Ex: Consider the plane $x_{1}+2 x_{2}+x_{3}=0$ in \mathbb{R}^{3}. Find the matrix representing a reflection in this plane; then find the image of $\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$ under this map.

Solution: The normal vector is $\vec{n}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$, and we must find $[\operatorname{Ref} \mid \stackrel{n}{n}]=I-2\left[\operatorname{Proj}_{\vec{n}}\right]$.

Since

$$
\begin{aligned}
& \operatorname{Proj}_{\vec{n}} \vec{e}_{1}=\frac{1}{6}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 6 \\
1 / 3 \\
1 / 6
\end{array}\right] \\
& \operatorname{Proj}_{n} \vec{e}_{2}=\frac{2}{6}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
1 / 3
\end{array}\right] \\
& \operatorname{Proj}_{\vec{n}} \vec{e}_{3}=\frac{1}{6}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / 6 \\
1 / 3 \\
1 / 6
\end{array}\right]
\end{aligned}
$$

We have $\left[P_{r o j_{n}}\right]=\left[\begin{array}{lll}1 / 6 & 1 / 3 & 1 / 6 \\ 1 / 3 & 2 / 3 & 1 / 3 \\ 1 / 6 & 1 / 3 & 1 / 6\end{array}\right]$, and hence

$$
\begin{aligned}
{\left[\operatorname{Refl}_{\vec{n}}\right] } & =I-2\left[\operatorname{Proj}_{\vec{n}}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-2\left[\begin{array}{ccc}
1 / 6 & 1 / 3 & 1 / 6 \\
1 / 3 & 2 / 3 & 1 / 3 \\
1 / 6 & 1 / 3 & 1 / 6
\end{array}\right]=\left[\begin{array}{ccc}
2 / 3 & -2 / 3 & -1 / 3 \\
-2 / 3 & -1 / 3 & -2 / 3 \\
-1 / 3 & -2 / 3 & 2 / 3
\end{array}\right]
\end{aligned}
$$

The reflection of $\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$ in this plane is

$$
\operatorname{Ref} \left\lvert\, \stackrel{n}{n}\left(\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right)\right)=\left[\operatorname{Refl}_{n}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
2 / 3 & -2 / 3 & -1 / 3 \\
-2 / 3 & -1 / 3 & -2 / 3 \\
-1 / 3 & -2 / 3 & 2 / 3
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
-1
\end{array}\right]\right.
$$

