§ 3.2 - Matrix Mappings and Linear Mappings
In high school you studied functions from \mathbb{R} to \mathbb{R}.
Ex: The function $f(x)=x^{2}$ assigns to each x in the domain (\mathbb{R}) a, unique value y in the codomain (also \mathbb{R}). We say that f maps x to y, or that y is the image of x under f.

In this section we will begin to study functions on higher dimensional spaces:

$$
\begin{aligned}
f: & \mathbb{R}^{n} \longrightarrow \\
& \mathbb{R}^{m} \\
& \text { (domain) } \\
& \text { (codomain) }
\end{aligned}
$$

These are sometimes called mappings, transformations, or operators.

Matrix Mappings
Let A be an $m \times n$ matrix. We know that if \vec{x} is a vector in \mathbb{R}^{n}, then $A \vec{x}$ is a vector in \mathbb{R}^{m}.

This gives us a mapping $\underline{f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}}$ defined by

$$
f_{A}(\vec{x})=A \vec{x} .
$$

We commonly call this the matrix mapping corresponding to A.

Note: If $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a mapping that sends
$\vec{x} \in \mathbb{R}^{n}$ to $\vec{y} \in \mathbb{R}^{m}$, it would be correct to write

$$
f\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

Instead, however, we typically write $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{m}\end{array}\right]$
or $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. This looks a little cleaner!

Ex: If $A=\left[\begin{array}{cc}1 & -1 \\ 2 & 4 \\ 3 & 3\end{array}\right]$, then A is 3×2.
By above, we can view this as a matrix mapping

$$
f_{A}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}
$$

that sends \vec{x} to $A \vec{x}$.

We have $f_{A}(2,1)=A\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{ll}1 & -1 \\ 2 & 4 \\ 3 & 3\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 8 \\ 9\end{array}\right]$
and

$$
f_{A}(1,-1)=A\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
2 & 4 \\
3 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right]
$$

Ex: If $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 4\end{array}\right]$ then A is 2×3
This gives us a matrix mapping $f_{A}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$.

We have... $f_{A}(1,0,0)=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

$$
f_{A}(0,1,0)=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]
$$

Note: This makes sense! We know from $\$ 3.1$ that $A \overrightarrow{e_{i}}=i^{\text {th }}$ column of A.

$$
f_{A}(1,1,0)=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

$$
f_{A}(2,0,0)=\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

Notice that

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } f_{A}(1,1,0)=f_{A}(1,0,0)+f_{A}(0,1,0) ;} \\
& {\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \text { and } f_{A}(2,0,0)=2 f_{A}(1,0,0)}
\end{aligned}
$$

This is no coincidence!

Theorem: If A is an $m \times n$ matrix, then the matrix mapping $f_{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ satisfies
(LI): $\quad f_{A}(\vec{x}+\vec{y})=f_{A}(\vec{x})+f_{A}(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$
(LL): $f_{A}(t \vec{x})=t f_{A}(\vec{x})$ for all $\vec{x} \in \mathbb{R}^{n}, t \in \mathbb{R}$.

Proof: (L1) : $f_{A}(\vec{x}+\vec{y})=A(\vec{x}+\vec{y})=A \vec{x}+A \vec{y}=f_{A}(\vec{x})+f_{A}(\vec{y})$
(L2): $f_{A}(t \vec{x})=A(t \vec{x})=t(A \vec{x})=t f_{A}(\vec{x})$

These two properties are SUPER important!
Let's see why!

Ex: Suppose A is a 3×3 matrix and we know

$$
\begin{aligned}
& f_{A}(1,0,0)=(3,3,1) \\
& f_{A}(0,1,0)=(-1,0,1) \\
& f_{A}(0,0,1)=(0,2,0) .
\end{aligned}
$$

What is $f_{A}(1,4,2)$?

Solution: Since $\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]=(1)\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+(4)\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+(2)\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, we have

$$
\begin{aligned}
f_{A}(1,4,2) & =f_{A}(1,0,0)+4 f_{A}(0,1,0)+2 f_{A}(0,0,1) \\
& =\left[\begin{array}{l}
3 \\
3 \\
1
\end{array}\right]+4\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+2\left[\begin{array}{c}
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
7 \\
5
\end{array}\right]
\end{aligned}
$$

So why are (L1) and (L2) important?

Because if a function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ satisfies (LI) and (L2) and we know $f\left(\vec{x}_{1}\right), f\left(\vec{x}_{2}\right), \ldots, f\left(\vec{x}_{k}\right)$, then we can find

$$
f\left(t_{1} \vec{x}_{1}+t_{2} \vec{x}_{2}+\cdots+t_{k} \vec{x}_{k}\right)=t_{1} f\left(\vec{x}_{1}\right)+t_{2} f\left(\vec{x}_{2}\right)+\cdots+t_{k} f\left(\overrightarrow{x_{k}}\right) .
$$

For a matrix mapping we can say even more!
Since $f_{A}\left(\overrightarrow{e_{i}}\right)=A \vec{e}_{i}=i^{\text {th }}$ column of A, we have

$$
A=\left[\begin{array}{llll}
f_{A}\left(\overrightarrow{e_{1}}\right) & f_{A}\left(\vec{e}_{2}\right) & \cdots & f_{A}\left(\overrightarrow{e_{n}}\right)
\end{array}\right]
$$

So f_{A} is entirely determined by what it does to the standard basis!

Ex: From the previous example,

$$
\begin{aligned}
& f_{A}(1,0,0)=(3,3,1), \quad f_{A}(0,1,0)=(-1,0,1), \quad f_{A}(0,0,1)=(0,2,0) \\
& \text { So } A=\left[\begin{array}{lll}
f_{A}\left(\overrightarrow{e_{1}}\right) & f_{A}\left(\overrightarrow{e_{2}}\right) & f_{A}\left(\overrightarrow{e_{3}}\right)
\end{array}\right]=\left[\begin{array}{ccc}
3 & -1 & 0 \\
3 & 0 & 2 \\
1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Linear Mappings
We saw above that matrix mappings satisfy (L1) and (LZ). Are there other maps with these properties?

Definition: If a function $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ satisfies
(LI) $L(\vec{x}+\vec{y})=L(\vec{x})+L(\vec{y})$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, and
(L2) $L(t \vec{x})=t L(\vec{x})$ for all $\vec{x} \in \mathbb{R}^{n}, \quad t \in \mathbb{R}$,

We call L a linear mapping or a linear transformation.

Ex: Show that the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}-2 x_{2}\right)$ is linear.

Solution: We must show
(LI) $\quad \underline{f(\vec{x}+\vec{y})}=f(\vec{x})+f(\vec{y})$ and (L2) $\underline{f(t \vec{x})=t f(\vec{x})}$ for all $\vec{x}, \vec{y} \in \mathbb{R}^{2}$ and $t \in \mathbb{R}$.
(LI)

$$
\begin{aligned}
f(\vec{x}+\vec{y}) & =f\left(x_{1}+y_{1}, x_{2}+y_{2}\right) \\
& =\left[\begin{array}{c}
x_{2}+y_{2} \\
\left(x_{1}+y_{1}\right)-2\left(x_{2}+y_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{2}+y_{2} \\
\left(x_{1}-2 x_{2}\right)+\left(y_{1}-2 y_{2}\right)
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{c}
x_{2} \\
x_{1}-2 x_{2}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{1}-2 y_{2}
\end{array}\right]=f\left(x_{1}, x_{2}\right)+f\left(y, y_{2}\right) .
$$

\therefore (LI) holds.

$$
\begin{aligned}
(L \mathcal{Q}): f(t \vec{x}) & =f\left(t x_{1}, t x_{2}\right) \\
& =\left[\begin{array}{c}
t x_{2} \\
t x_{1}-2\left(t x_{2}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
t x_{2} \\
t\left(x_{1}-2 x_{2}\right)
\end{array}\right] \\
& =t\left[\begin{array}{c}
x_{2} \\
x_{1}-2 x_{2}
\end{array}\right]=t f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

\therefore (L2) holds.

Since f satisfies (L1) and (L2), f is linear!

To show a function is NOT linear, we must exhibit Specific vectors that violate (L1) or (L2).

Ex: Show that the function $g: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ given by $g\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} x_{2}, x_{3}\right)$ is NOT linear.

Solution: Note that $g(1,1,1)=\left[\begin{array}{c}(1)(1) \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad$ and

$$
\begin{aligned}
& g(2,2,2)=\left[\begin{array}{c}
(2)(2) \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \text {. uh oh... } \\
& \quad\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]=2\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { but } g(2,2,2)=\left[\begin{array}{l}
4 \\
2
\end{array}\right] \neq 2\left[\begin{array}{l}
1 \\
1
\end{array}\right]=2 g(1,1,1)
\end{aligned}
$$

$\therefore(L 2)$ fails, so g is NOT linear!

Alternative argument:

$$
g(1,0,0)=\left[\begin{array}{c}
(1)(0) \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \text { and } \quad g(0,1,0)=\left[\begin{array}{c}
(0)(1) \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

but $g(1,1,0)=\left[\begin{array}{c}(1)(1) \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

So $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, but

$$
g(1,1,0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]=g(1,0,0)+g(0,1,0) .
$$

Thus, (LI) fails, so g is NOT linear.

Ex: Is $h: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ given by

$$
h\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}+4 x_{3}\right)
$$

a linear map?

Solution: Let's try to prove

$$
\text { (LI) } h(\vec{x}+\vec{y})=h(\vec{x})+h(\vec{y}) \text { and (L2) } h(t \vec{x})=t h(\vec{x})
$$

for all $\vec{x}, \vec{y} \in \mathbb{R}^{3}$ and $t \in \mathbb{R}$.

$$
\begin{aligned}
(L 1): h(\vec{x}+\vec{y}) & =h\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}\right) \\
& =\left[\begin{array}{l}
\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right) \\
\left(x_{1}+y_{1}\right)+4\left(x_{3}+y_{3}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right) \\
\left(x_{1}+4 x_{3}\right)+\left(y_{1}+4 y_{3}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
x_{1}-x_{2} \\
x_{1}+4 x_{3}
\end{array}\right]+\left[\begin{array}{l}
y_{1}-y_{2} \\
y_{1}+4 y_{3}
\end{array}\right]=h(\vec{x})+h(\vec{y}) .
\end{aligned}
$$

\therefore (LI) holds.

$$
\begin{aligned}
(L z) h(t \bar{x}) & =h\left(t x_{1}, t x_{2}, t x_{3}\right) \\
& =\left[\begin{array}{l}
t x_{1}-t x_{2} \\
t x_{1}+4\left(t x_{3}\right)
\end{array}\right] \\
& =\left[\begin{array}{l}
t\left(x_{1}-x_{2}\right) \\
t\left(x_{1}+4 x_{3}\right)
\end{array}\right] \\
& =t\left[\begin{array}{l}
x_{1}-x_{2} \\
x_{1}+4 x_{3}
\end{array}\right]=t h(\vec{x})
\end{aligned}
$$

\therefore (LI) holds

Since h satisfies (LI) and (L2), h is linear.

Hmm.. to answer this let's consider an example.

Ex: Consider the mapping $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ given by

$$
f\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}-x_{2}\right)
$$

Which we showed above is linear.

If this were a matrix mapping f_{A}, then its columns should be...

$$
\begin{aligned}
& 1^{\text {st }} \text { column }=f\left(\vec{e}_{1}\right)=f(1,0)=(0,1) \\
& 2^{\text {nd }} \text { column }=f\left(\vec{e}_{2}\right)=f(0,1)=(1,-1) .
\end{aligned}
$$

Taking $A=\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]$ we get

$$
f_{A}\left(x_{1}, x_{2}\right)=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{1}-x_{2}
\end{array}\right]=f\left(x_{1}, x_{2}\right)
$$

So yes, f is a matrix mapping! It turns out this is always the case.

Theorem: If $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is linear, then L can be represented as a matrix mapping with matrix

$$
[L]=\left[\begin{array}{llll}
L\left(\overrightarrow{e_{1}}\right) & L\left(\overrightarrow{e_{2}}\right) & \cdots & L\left(\overrightarrow{e_{n}}\right)
\end{array}\right]
$$

Proof: $L(\vec{x})=L\left(x_{1} \overrightarrow{e_{1}}+x_{2} \vec{e}_{2}+\cdots+x_{n} \vec{e}_{n}\right)$

$$
\begin{aligned}
& =x_{1} L\left(\overrightarrow{e_{1}}\right)+x_{2} L\left(\overrightarrow{e_{2}}\right)+\cdots+x_{n} L\left(\overrightarrow{e_{n}}\right) \\
& =\left[L\left(\overrightarrow{e_{1}}\right) L\left(\overrightarrow{e_{2}}\right) \cdots L\left(\overrightarrow{e_{n}}\right)\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \\
& =[L] \vec{x}
\end{aligned}
$$

Ex: Above, we saw that $h: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ given by

$$
h\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}+4 x_{3}\right)
$$

is linear. How can we represent this as a matrix mapping? Use this to find $h(2,1,0)$.

Solution: The corresponding matrix is

$$
[h]=\left[\begin{array}{lll}
h\left(\overrightarrow{e_{1}}\right) & h\left(\overrightarrow{e_{2}}\right) & h\left(\overrightarrow{e_{3}}\right)
\end{array}\right]
$$

Since

$$
\begin{aligned}
& h\left(\vec{e}_{1}\right)=h(1,0,0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
& h\left(\vec{e}_{2}\right)=h(0,1,0)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad \text { and } \\
& h\left(\overrightarrow{e_{3}}\right)=h(0,0,1)=\left[\begin{array}{l}
0 \\
4
\end{array}\right], \quad \text { we have }
\end{aligned}
$$

$$
[h]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 4
\end{array}\right]
$$

Let's find $h(2,1,0)$!

$$
h(2,1,0)=[h]\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Combinations of Mappings
Suppose we have functions
$L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}, M: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, and $t \in \mathbb{R}$.

From these functions, we can make new functions:
[Sum] $L+M: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $(L+M)(\vec{x})=L(\vec{x})+M(\vec{x})$
[Multiple] $t L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $(t L)(\vec{x})=t L(\vec{x})$,

FACT: If L and M are linear, then so are $L+M$ and $t L$!
[This is not a tough fact to prove, but it is tedious.
Try it as an exercise!]
Note: If L and M are linear, we can find $[L]$ and $[M]$ by calculating $L\left(\vec{e}_{i}\right)$ and $M\left(\vec{e}_{i}\right)$.

Can we use $[L]$ and $[M]$ to find $[L+M]$? can we use $[L]$ to find $[t L]$?

Yes! It turns out that $[L+M]=[L]+[M]$ and $[t L]=t[L]$

Why? Well, for any $\vec{x} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
{[L+M] \vec{x} } & =(L+M) \vec{x} \\
& =L(\vec{x})+M(\vec{x}) \\
& =[L] \vec{x}+M[\vec{x}]=([L]+[M]) \vec{x}
\end{aligned}
$$

$\therefore[L+M]=[L]+[M]$ by Q3 of Assignment 7.

Exercise: Imitate the above argument to show that

$$
[t L]=t[L]
$$

Ex: Consider the mappings $L\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+x_{2}\right)$

$$
M\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}-x_{2}\right) .
$$

(As an exercise, show that L and M are linear.)

By the above FACT, the functions

$$
\begin{align*}
(L+M)\left(x_{1}, x_{2}\right) & =L\left(x_{1}, x_{2}\right)+M\left(x_{1}, x_{2}\right) \\
& =\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]+\left[\begin{array}{c}
x_{2} \\
x_{1}-x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
2 x_{1}
\end{array}\right] \tag{and}\\
(2 L)\left(x_{1}, x_{2}\right) & =2 L\left(x_{1}, x_{2}\right) \\
& =2\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 x_{1} \\
2 x_{1}+2 x_{2}
\end{array}\right]
\end{align*}
$$

are also linear.

What are $[L],[M],[L+M],[2 L]$?

We have $[L]=\left[L\left(\vec{e}_{1}\right) L\left(\overrightarrow{e_{2}}\right)\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$

$$
[M]=\left[M\left(\vec{e}_{1}\right) M\left(\vec{e}_{2}\right)\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]
$$

We could do the same thing to find $[L+M]$ and $[Z L]$, or we could use the equations

$$
\begin{aligned}
& {[L+M]=[L]+[M]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 0
\end{array}\right]} \\
& {[2 L]=2[L]=2\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
2 & 2
\end{array}\right]}
\end{aligned}
$$

Compositions

Suppose we have mappings $L: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ and $M: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{p}$. We can form the composition $\underbrace{M \circ L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ given by $(M \circ L)(\vec{x})=M(L(\vec{x}))$ $\left[\begin{array}{l}\text { We read this right to left. } \\ \text { First apply } L \text {, then apply } M\end{array}\right]$

Pictorially...

Just like in the cases of addition and scalar multiplication, we have...

If L and M are linear, then so is $M \circ L$

Why? Well, if $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $t \in \mathbb{R}$, then

$$
\begin{array}{rlrl}
(M \circ L)(\vec{x}+\vec{y}) & =M(L(\vec{x}+\vec{y})) \\
& =M(L(\vec{x})+L(\vec{y})) & & \text { (as } L \text { is linear) } \\
& =M(L(\vec{x}))+M(L(\vec{y})) & \text { (as } M \text { is linear) } \\
& =(M \circ L)(\vec{x})+(M \cdot L)(\vec{y}) \quad \therefore(L) \text { holds }
\end{array}
$$

$$
\begin{aligned}
(M \cdot L)(t \vec{x}) & =M(L(t \vec{x})) \\
& =M(t L(\bar{x}))
\end{aligned}
$$

(as L is linear)

$$
\begin{aligned}
& =t M(L(\vec{x})) \quad(\text { as } M \text { is linear }) \\
& =t(M \cdot L)(\bar{x}) \quad \therefore(L 2) \text { holds }
\end{aligned}
$$

Just like before, if L and M are linear and we know $[L]$ and $[M]$, then we can find $[M \cdot L]$. Indeed, if \vec{x} is any vector in \mathbb{R}^{n}, then

$$
\begin{aligned}
{[M \cdot L] \vec{x} } & =(M \circ L)(\vec{x}) \\
& =M(L(\vec{x})) \\
& =M([L] \vec{x})=[M][L] \vec{x} .
\end{aligned}
$$

By Q3 of Assignment 7, we have $[M \cdot L]=[M][L]$.

Ex: Consider the linear mappings from the previous example:

$$
L\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{1}+x_{2}\right), M\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}-x_{2}\right) .
$$

We found that $[L]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $[M]=\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right]$.
By the above results, the composition map

$$
\begin{aligned}
(M \circ L)\left(x_{1}, x_{2}\right) & =M\left(L\left(x_{1}, x_{2}\right)\right) \\
& =M\left(x_{1}, x_{1}+x_{2}\right)=\left(x_{1}+x_{2},-x_{2}\right)
\end{aligned}
$$

is also linear.
What is $[M \circ L]$?

We could find this by computing $(M \cdot L)\left(\vec{e}_{1}\right)$ and $(M \circ L)\left(\overrightarrow{e_{2}}\right) \ldots$ OR we could use

$$
[M \circ L]=[M][L]=\left[\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]
$$

