Chapter 3 - Linear Transformations

From Chapter 2, we understand how matrices can be used to solve systems of linear equations. In this chapter we will view them very differently: as functions from \mathbb{R}^n to \mathbb{R}^m .

<u>33.1</u> - Operations on Matrices

Let's put our understanding of systems aside for the time being and instead think of a matrix as just a block of numbers.

A matrix A is said to have <u>size mxn</u> ("mbyn") if it has <u>m</u> rows and <u>n</u> columns.

$$\begin{array}{c} E_{X'} \\ \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 3 & 3 \end{bmatrix}$$
 is $3 \times 2 \qquad \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is $2 \times 2 \qquad \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$

An nxn matrix is called a <u>square matrix</u> As in the above example, we sometimes use <u>aij</u> to denote the entry of A in <u>row i</u>, <u>column</u> j.

When dealing with matrices abstractly, we may write

$$A = (a_{ij})$$
Two matrices $A = (a_{ij})$ and $B = (b_{ij})$ equal if they
have the same size and the same entries (i.e.,
 $a_{ij} = b_{ij}$ for all i, j .)
Okay... but
what can we do
with these ??

Well... just like with vectors we can add two matrices of the same size:

If
$$A = (a_{ij}), B = (b_{ij}), \text{ then } \underline{A + B} = (a_{ij} + b_{ij})$$

$$Ex: \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 3 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 2 \\ 1 & 1 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & 5 \\ 6 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 10 & 2 \\ 0 & -3 \end{bmatrix}$$

What is
$$\begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 3 & 3 \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix}$$
? Not defined!
The sizes are different!

Instead of a Zero vector, we have a <u>zero matrix</u>. The M×n Zero Matrix is Omn

$$E_{X}: O_{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We can also multiply a matrix by a scalar:
If
$$A = (a_{ij})$$
 and $E \in \mathbb{R}$, then $\underline{E}A = (\underline{E} \cdot a_{ij})$
 $E_X : 2 \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 4 & 8 \\ 6 & 6 \end{bmatrix}$, $(-1) \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ -1 & 2 \end{bmatrix}$

These operations satisfy properties similar to what we know for vectors

e.g.
$$L(A+B) = tA+tB$$
, $O_{m,n} + A = A$,
 $A+B = B+A$, $e+c...$

Matrix Multiplication

In order to define the notion of a product of matrices, let's first see how to define multiplication of a matrix A and a vector \vec{x} .

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 and $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Define the product $A\vec{x}$ to be the vector

$$\vec{Y} = \begin{bmatrix} a_{ii} \times_1 + a_{i2} \times_2 \\ a_{2i} \times_1 + a_{22} \times_2 \end{bmatrix}$$

So
$$y_1 = dot$$
 product of 1^{st} row of A with \vec{X} .
 $y_2 = dot$ product of 2^{nd} row of A with \vec{X} .

$$\begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 3(5) + 2(4) \\ 1(5) - 2(4) \end{bmatrix} = \begin{bmatrix} 23 \\ -3 \end{bmatrix}$$

Because this new vector resembles the left hand side of a <u>system of equations</u>! So instead of saying that \vec{x} is a solution to $[A|\vec{b}]$, we can simply write $A\vec{x} = \vec{b}$.

Just like we know for systems (§2.3), the product Ax is a linear combination of the columns of A:

$$\begin{array}{l} A \overrightarrow{X} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & X_1 + a_{12} & X_2 \\ a_{21} & X_1 + a_{22} & X_2 \end{bmatrix} \\ = \chi_1 \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} + \chi_2 \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$

Now suppose we have a second matrix $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$ and want to define a matrix product BA.

How should we do it?

Let's define it in terms of vector multiplication
of the columns of A:
$$BA = B\begin{bmatrix} a_{i1} & a_{i2} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} B\begin{bmatrix} a_{i1} \\ a_{21} \end{bmatrix} & B\begin{bmatrix} a_{i2} \\ a_{22} \end{bmatrix} \\ = \begin{bmatrix} b_{i1} a_{i1} + b_{i2} a_{21} & b_{i1} a_{i2} + b_{i2} a_{22} \\ b_{21} a_{i1} + b_{22} a_{21} & b_{21} a_{i2} + b_{22} a_{22} \end{bmatrix}$$

$$\underbrace{E_{X}}_{l} \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 3(0) + 2(4) & 3(1) + 2(-1) \\ 1(0) - 2(4) & 1(1) - 2(-1) \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 1 \\ -8 & 3 \end{bmatrix}$$

This works because the
$$\frac{\#}{4}$$
 of columns of B is equal to the $\frac{\#}{4}$ of rows of A ,

Definition: If B is an
$$m \times n$$
 matrix and A
is an $n \times p$ matrix, then BA is the $m \times p$
matrix whose (i,j) -entry is the dot product of
the ith row of B with the jth column of A.

$$\underbrace{E_{2}}_{2} \begin{bmatrix} 3 5 0 & 0 \\ 2 & 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 2 & -1 \\ 0 & 1 \\ 9 & 1 \end{bmatrix}^{2} \begin{bmatrix} 7 & 4 \\ 36 & 8 \end{bmatrix}^{2} \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 8 & 0 & 0 & 3 \\ -1 & -1 & 2 & 4 & 0 \end{bmatrix}^{2} \begin{bmatrix} 1 & 8 & 0 & 0 & 3 \\ 0 & 14 & 4 & 8 & 6 \end{bmatrix}^{2} \begin{bmatrix} 2 & 0 & 4 & 10 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 6 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 0 & 3 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} Not & defined! \\ # & of columns & of \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = 2$$

$$# & of & rows & of \begin{bmatrix} 1 & 5 \\ 0 & 3 \\ 5 & 1 \end{bmatrix} = 3$$

$$\begin{bmatrix} 0 & 3 & 5 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

$$We & will & think & of & a & 1 \times 1$$

$$matrix & as & a & scalar!$$

$$So & for & us, [-2] = -2.$$

Properties: If A, B, C are matrices of the
correct Sizes, and
$$t \in \mathbb{R}$$
, then
(i) $A(B+C) = A + AC$
(ii) $(B+C)A = BA + CA$
(iii) $A(BC) = (AB)C$
(iv) $t(AB) = (tA)B = A(tB)$

Γ

(1) Matrix multiplication is not commutative: $AB \neq BA$ (in general) $E_{X}: \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

(2) Matrix multiplication is not cancellative:

We can have AB=AC but B≠C.

$$\underbrace{E_{X}}_{O I} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \text{ but } \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

(3) The zero matrix times any matrix A is the zero Matrix.

(4) Let the n×n identity matrix be

$$\underline{I}_n = \begin{bmatrix} \vec{e}, \vec{e}_2 & \cdots & \vec{e}_n \end{bmatrix}$$

where {ei, ez, ..., en} is the standard basis for R^h.

(so
$$I_2 = \begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$$
, $I_3 = \begin{bmatrix} i & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & i \end{bmatrix}$, etc...)
If A is any max matrix, then $I_m A = A I_n = A$
The equation $A = A I_n = [A\vec{e_i} \ A\vec{e_2} \ \dots \ A\vec{e_n}]$ shows that
the *i*th column of A is $A\vec{e_i}$.
(This will be important in §32)

(5) If A and B are two matrices that multiply all vectors
$$\vec{X}$$
 in the same way, then $A = B$.

Г

Theorem: If A and B are
$$m \times n$$
 matrices and
A $\vec{x} = B\vec{x}$ for all vectors $\vec{x} \in \mathbb{R}^n$, then $A = B$.

Proof: If
$$A\vec{x} = B\vec{x}$$
 for all vectors \vec{x} , then
 $A\vec{e}_i = B\vec{e}_i$ for each \vec{e}_i in the standard basis.
By remark (4), this means that the ith column of A
and the ith column of B are the same for all i.
Therefore, A and B have the same entries, so $A = B\vec{B}$

Transpose of a Matrix
We can turn an
$$m \times n$$
 matrix $A^{=}(a_{ij})$ into an
 $n \times m$ matrix by turning rows into columns and
columns into rows. This matrix is called the
transpose of A, denoted \underline{A}^{T} .

Formally, the
$$(i,j)$$
-entry of A^{T} is A_{ji} , the (j,i) -
entry of A .

$$Ex: \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 3 & 3 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 4 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix}^{T} = \begin{bmatrix} 3 & i \\ 2 & -2 \end{bmatrix}^{r}, \qquad \begin{bmatrix} 5 \\ 4 \end{bmatrix}^{T} = \begin{bmatrix} 5 & 4 \end{bmatrix}$$

$$Properties: \quad For \quad all \quad m \times n \quad matrices \quad A \quad and \quad B,$$

$$(i) \quad (A^{T})^{T} = A;$$

$$(i) \quad (A^{T})^{T} = A;$$

$$(i) \quad (A+B)^{T} = A^{T} + B^{T};$$

$$(ii) \quad (tA)^{T} = t A^{T} \quad for \quad all \quad t \in \mathbb{R}.$$

$$(iv) \quad (AB)^{T} = B^{T}A^{T}$$