Chapter 3 - Linear Transformations
From chapter 2, we understand how matrices can be used to solve systems of linear equations. In this chapter we will view them very differently: as functions from \mathbb{R}^{n} to \mathbb{R}^{m}.
§3.1 - Operations on Matrices
Let's put our understanding of systems aside for the time being and instead think of a matrix as just a block of numbers.

A matrix A is said to have size $\underline{m \times n}$ (" m by n") if it has m rows and n columns.

Ex: $\left[\begin{array}{cc}1 & -1 \\ 2 & 4 \\ 3 & 3\end{array}\right]$ is $3 \times 2 \quad\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is 2×2

An $n \times n$ matrix is called a square matrix

As in the above example, we sometimes use $\frac{a_{i j}}{}$ to denote the entry of A in row i, column j.

When dealing with matrices abstractly, we may write

$$
A=\left(a_{i j}\right)
$$

Two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ equal if they have the same size and the same entries (ie., $a_{i j}=b_{i j}$ for all i, j.)

Well... just like with vectors we can add two matrices of the same size:

If $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$, then $A+B=\left(a_{i j}+b_{i j}\right)$

Ex: $\left[\begin{array}{cc}1 & -1 \\ 2 & 4 \\ 3 & 3\end{array}\right]+\left[\begin{array}{cc}0 & 2 \\ 1 & 1 \\ 3 & -2\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 3 & 5 \\ 6 & 1\end{array}\right]$

$$
\left[\begin{array}{cc}
3 & 2 \\
1 & -2
\end{array}\right]+\left[\begin{array}{cc}
7 & 0 \\
-1 & -1
\end{array}\right]=\left[\begin{array}{cc}
10 & 2 \\
0 & -3
\end{array}\right]
$$

What is $\left[\begin{array}{cc}1 & -1 \\ 2 & 4 \\ 3 & 3\end{array}\right]+\left[\begin{array}{cc}3 & 2 \\ 1 & -2\end{array}\right]$? Not defined!

Instead of a zero vector, we have a zero matrix.
The $m \times n$ zero matrix is $O_{m, n}$

Ex: $O_{2,3}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

We can also multiply a matrix by a scalar:
If $A=\left(a_{i j}\right)$ and $t \in \mathbb{R}$, then $t A=\left(t \cdot a_{i j}\right)$
Ex: $2\left[\begin{array}{rr}1 & -1 \\ 2 & 4 \\ 3 & 3\end{array}\right]=\left[\begin{array}{cc}2 & -2 \\ 4 & 8 \\ 6 & 6\end{array}\right], \quad(-1)\left[\begin{array}{cc}3 & 2 \\ 1 & -2\end{array}\right]=\left[\begin{array}{cc}-3 & -2 \\ -1 & 2\end{array}\right]$

These operations satisfy properties similar to what we know for vectors
egg. $\quad t(A+B)=t A+t B, \quad O_{m, n}+A=A$,

$$
A+B=B+A, \quad e+c \ldots
$$

Matrix Multiplication
In order to define the notion of a product of matrices, let's first see how to define multiplication of a matrix A and a vector \vec{x}.

Suppose $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]$.
Define the product $A \vec{x}$ to be the vector

$$
\vec{y}=\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2} \\
a_{21} x_{1}+a_{22} x_{2}
\end{array}\right]
$$

So $y_{1}=$ dot product of $1^{\text {st }}$ row of A with \vec{x}. $y_{2}=$ dot product of $2^{\text {nd }}$ row of A with \vec{x}.

Ex: $\left[\begin{array}{cc}3 & 2 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}5 \\ 4\end{array}\right]=\left[\begin{array}{l}3(5)+2(4) \\ 1(5)-2(4)\end{array}\right]=\left[\begin{array}{l}23 \\ -3\end{array}\right]$

Why would we define it like this??

Because this new vector resembles the left hand side of a system of equations! So instead of saying that \vec{x} is a solution to $[A \mid \vec{b}]$, we can Simply write $A \vec{x}=\vec{b}$.

Just like we know for systems ($\$ 2.3$), the product $A \vec{x}$ is a linear combination of the columns of A :

$$
\begin{aligned}
A \vec{x}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\left[\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2} \\
a_{21} x_{1}+a_{22} x_{2}
\end{array}\right] \\
& =x_{1}\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right]+x_{2}\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]
\end{aligned}
$$

Now suppose we have a second matrix $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$ and want to define a matrix product $B A$.

How should we do it?

Let's define it in terms of vector multiplication of the columns of A :

$$
\begin{aligned}
B A=B\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] & =\left[B\left[\begin{array}{l}
a_{11} \\
a_{21}
\end{array}\right] B\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]\right. \\
& =\left[\begin{array}{ll}
b_{11} a_{11}+b_{12} a_{21} & b_{11} a_{12}+b_{12} a_{22} \\
b_{21} a_{11}+b_{22} a_{21} & b_{21} a_{12}+b_{22} a_{22}
\end{array}\right] \\
\underline{E x:}\left[\begin{array}{ll}
3 & 2 \\
1 & -2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
4 & -1
\end{array}\right] & =\left[\begin{array}{ll}
3(0)+2(4) & 3(1)+2(-1) \\
1(0)-2(4) & 1(1)-2(-1)
\end{array}\right] \\
& =\left[\begin{array}{ll}
8 & 1 \\
-8 & 3
\end{array}\right]
\end{aligned}
$$

Note: This may look complicated, but it's not!
In row i column j of $B A$, the entry is the dot product of B^{\prime} s $i^{\text {th }}$ row and A 's $j^{\text {th }}$ column!

This works because the $\#$ of columns of B is equal to the \# of rows of A.

Let's use this example to define the product of matrices more generally:

Definition: If B is an $\underline{m \times n}$ matrix and A is an nip matrix, then $B A$ is the $m \times p$ matrix whose (i, j)-entry is the dot product of the $i^{\text {th }}$ row of B with the $j^{\text {th }}$ column of A.

If the \# of columns of B is not equal to the number of rows of A, the product $B A$ is not defined.

Ex:

$$
\begin{aligned}
& {\left[\begin{array}{llll}
3 & 5 & 0 & 0 \\
2 & 1 & -1 & 4
\end{array}\right]\left[\begin{array}{cc}
-1 & 3 \\
2 & -1 \\
0 & 1 \\
9 & 1
\end{array}\right]=\left[\begin{array}{cc}
7 & 4 \\
36 & 8
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right]\left[\begin{array}{ccccc}
1 & 8 & 0 & 0 & 3 \\
-1 & -1 & 2 & 4 & 0
\end{array}\right]=\left[\begin{array}{lllll}
1 & 8 & 0 & 0 & 3 \\
0 & 14 & 4 & 8 & 6
\end{array}\right]} \\
& {\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 2 & 5
\end{array}\right]=\left[\begin{array}{llll}
2 & 0 & 4 & 10 \\
0 & 0 & 0 & 0 \\
3 & 0 & 6 & 15
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 5 \\
0 & 3 \\
5 & 1
\end{array}\right]=\text { Not defined! }} \\
{\left[\begin{array}{lll}
0 & 3 & 5
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\text { \# of columns of rows of }\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]=2 \\
1
\end{array}\right]=3} \\
0 \\
5 \\
1
\end{array}\right]=\left\{\begin{array}{l}
\text { we will think of } a 1 \times 1
\end{array}\right.
$$ matrix as a scalar!

So for us, $[-2]=-2$.

Properties: If A, B, C are matrices of the correct sizes, and $t \in \mathbb{R}$, then
(i) $A(B+C)=A+A C$
(ii) $(B+C) A=B A+C A$
(iii) $A(B C)=(A B) C$
(iv) $\quad t(A B)=(t A) B=A(t B)$

Remarks:
(1) Matrix multiplication is not commutative:

$$
A B \neq B A!\quad \text { (in general) }
$$

Ex: $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
(2) Matrix multiplication is not cancellative:

We can have $A B=A C$ but $B \neq C$

Ex: $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, but $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
(3) The zero matrix times any matrix A is the zero matrix.
(4) Let the $n \times n$ identity matrix be

$$
I_{n}=\left[\begin{array}{llll}
\vec{e}_{1} & \vec{e}_{2} & \cdots & \vec{e}_{n}
\end{array}\right]
$$

where $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ is the standard basis for \mathbb{R}^{n}.
(so $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, etc...)

If A is any $m \times n$ matrix, then $\operatorname{Im} A=A I_{n}=A$

The equation $A=A I_{n}=\left[\begin{array}{llll}A \vec{e}_{1} & A \vec{e}_{2} & \ldots A \vec{e}_{n}\end{array}\right]$ shows that the $i^{\text {th }}$ column of A is $A e_{i}$.
(This will be important in $\$ 3.2$)

We sometimes just write I for the identity matrix when its size is clear from context.
(5) If A and B are two matrices that multiply all vectors \vec{x} in the same way, then $A=B$.

Theorem: If A and B are $m \times n$ matrices and $A \vec{x}=B \vec{x}$ for all vectors $\vec{x} \in \mathbb{R}^{n}$, then $A=B$.

Proof: If $A \vec{x}=B \vec{x}$ for all vectors \vec{x}, then
$A \vec{e}_{i}=B \vec{e}_{i}$ for each \vec{e}_{i} in the standard basis.
By remark (4), this means that the $i^{\text {th }}$ column of A and the $i^{\text {th }}$ column of B are the same for all i.

Therefore, A and B have the same entries, so $A=B$ 国

Transpose of a Matrix
We can turn an $m \times n$ matrix $A=\left(a_{i j}\right)$ into an $n \times m$ matrix by turning rows into columns and columns into rows. This matrix is called the transpose of A, denoted A^{\top}.

Formally, the (i, j)-entry of A^{\top} is $a_{j i}$, the (j, i) entry of A.

$$
\text { Ex: }\left[\begin{array}{cc}
1 & -1 \\
2 & 4 \\
3 & 3
\end{array}\right]^{\top}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 4 & 3
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
3 & 2 \\
1 & -2
\end{array}\right]^{\top}=\left[\begin{array}{rr}
3 & 1 \\
2 & -2
\end{array}\right], \quad\left[\begin{array}{l}
5 \\
4
\end{array}\right]^{\top}=\left[\begin{array}{ll}
5 & 4
\end{array}\right]
$$

Properties: For all $m \times n$ matrices A and \mathcal{B},
(i) $\left(A^{\top}\right)^{\top}=A$;
(ii) $(A+B)^{\top}=A^{\top}+B^{\top}$;
(iii) $(t A)^{\top}=t A^{\top} \quad$ for all $\quad t \in \mathbb{R}$.
(iv) $(A B)^{\top}=B^{\top} A^{\top}$

