§2.3 - Applications to Spanning; Linear Independence

Consider once again our first example from 2.1:

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}=4 \\
2 x_{2}+x_{3}=3 \\
2 x_{1}+x_{2}-5 x_{3}=7
\end{array} \longleftrightarrow\left[\begin{array}{rrr|r}
1 & 1 & -2 & 4 \\
0 & 2 & 1 & 3 \\
2 & 1 & -5 & 7
\end{array}\right]
$$

This system can be written in a new way using vectors:

$$
\underset{\uparrow}{x_{1}} \underset{\uparrow}{\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]}+x_{2}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
1 \\
-5
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right]
$$

columns of coefficient matrix

Our solution was $\vec{x}=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$, and sure enough...

$$
0\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+2\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]-\left[\begin{array}{c}
-2 \\
1 \\
-5
\end{array}\right]=\left[\begin{array}{l}
4 \\
3 \\
7
\end{array}\right] 1
$$

So...
Finding solutions
to $[A \mid \vec{b}]$

Finding linear combinations of the columns of A intersection of hyperplanes.
 that equal \vec{b}.
(Row Picture) (Column Picture)

This new perspective can help us solve some (formerly) tricky problems from Chapter 1.
(1) Spanning Problems

Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ be a set of vectors in \mathbb{R}^{m}, and let

$$
A=\left[\begin{array}{llll}
\vec{V}_{1} & \vec{V}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]
$$

be the matrix whose columns are $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}$.

A vector $\vec{b} \in \mathbb{R}^{m}$ belongs to $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ if and only if the system $[A \mid \vec{b}]$ is consistent.

If it is consistent, any solution $\vec{X}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ gives a linear combination that equals \vec{b} :

$$
x_{1} \stackrel{\rightharpoonup}{V}_{1}+x_{2} \stackrel{\rightharpoonup}{V}_{2}+\cdots+x_{n} \stackrel{\rightharpoonup}{V}_{n}=\stackrel{\rightharpoonup}{b}
$$

Ex: Does $\left[\begin{array}{c}-2 \\ -3 \\ 1\end{array}\right]$ belong to Span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{c}-1 \\ -3 \\ 3\end{array}\right]\right\}$?

Solution: Here $A=\left[\begin{array}{cccc}1 & 1 & 2 & -1 \\ 1 & -1 & 1 & -3 \\ 1 & 5 & 4 & 3\end{array}\right], \quad \stackrel{\rightharpoonup}{b}=\left[\begin{array}{c}-2 \\ -3 \\ 1\end{array}\right]$.

Is $[A \mid \vec{b}]$ consistent?

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & 1 & 2 & -1 & -2 \\
1 & -1 & 1 & -3 & -3 \\
1 & 5 & 4 & 3 & 1
\end{array}\right] \begin{array}{l}
\sim \\
R_{2}-R_{1} \\
R_{3}-R_{1}
\end{array}\left[\begin{array}{rrrr|r}
1 & 1 & 2 & -1 & -2 \\
0 & -2 & -1 & -2 & -1 \\
0 & 4 & 2 & 4 & 3
\end{array}\right] \sim } \sim \\
& R_{3}+2 R_{2}
\end{aligned}
$$

The system is inconsistent, so $\left[\begin{array}{c}-2 \\ -3 \\ 1\end{array}\right]$ is NOT in the span!

Ex: Does $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ belong to Span $\left\{\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 7 \\ 7\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]\right\}$?

Solution: As an exercise, check that

$$
\left[\begin{array}{cccc|c}
1 & 2 & 0 & 1 & 1 \\
3 & 7 & 1 & 1 & 2 \\
4 & 7 & -1 & 4 & 3
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 0 & -2 & 0 & -2 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]_{(\text {RREF })}
$$

This system is consistent, so $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ does belong to this Span! The solution to the system is

$$
\vec{x}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{c}
2 \\
-1 \\
1 \\
0
\end{array}\right], t \in \mathbb{R}
$$

So if $\vec{x}=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 1\end{array}\right]$ (or any other vector in the solution)
we have $(-2)\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]+(1)\left[\begin{array}{l}2 \\ 7 \\ 7\end{array}\right]+(0)\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]+(1)\left[\begin{array}{l}1 \\ 1 \\ 4\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Ex: Show that any vector in \mathbb{R}^{2} can be written as a linear combination of $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]$, and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$. [This is Q4(a) of Assignment 4]

Solution: We need to show that the system

$$
\left[\begin{array}{lll|l}
1 & 1 & 0 & \vec{b} \\
1 & 2 & 1 & \text { is consistent for all } \vec{b} \text {. } . \text {. }
\end{array}\right] \quad \text { for }
$$

The rank of $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1\end{array}\right]$ is 2 , so every row
has a leading 1 ; the system is always consistent!
\therefore Every $\vec{b} \in \mathbb{R}^{2}$ belongs to $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$

Note: In $\$ 2.2$ we saw that $[A \mid \vec{b}]$ is consistent for all vectors \vec{b} if and only if $\operatorname{Rank}(A)=m \quad(\#$ of equations)

In terms of spanning:
The columns of A span \mathbb{R}^{m} if and only if $\operatorname{Rank}(A)=m$

An interesting consequence: If $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}=\mathbb{R}^{m}$, then $n \geqslant m$.
Why?
If $\operatorname{Span}\left\{\vec{V}_{1} \vec{V}_{2} \ldots, \vec{V}_{n}\right\}=\mathbb{R}^{m}$, then $\operatorname{Ran} K(A)=m$ (by above)

But then $m=\operatorname{Rank}(A) \leq \min (m, n) \leq n$
so $n \geqslant m$!

Ex: Is $\left\{\left[\begin{array}{l}3 \\ 2 \\ 1 \\ 4 \\ 8\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 2 \\ 0 \\ 2 \\ 10\end{array}\right],\left[\begin{array}{c}\pi^{2} \\ \pi^{2} \\ \pi^{3} \\ \pi^{4} \\ \pi^{5}\end{array}\right]\right\}$
a spanning set for \mathbb{R}^{5} ?

Solution: No WAY! By the above result, we need at least 5 vectors to span \mathbb{R}^{5} !
(2) Linear Independence Problems

Let $\left\{\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}\right\}$ be a set of vectors in \mathbb{R}^{m} and let

$$
A=\left[\begin{array}{llll}
\vec{V}_{1} & \vec{V}_{2} & \ldots & \vec{V}_{n}
\end{array}\right]
$$

be the matrix whose columns are $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$.

The columns of A are linearly independent if and only if the only solution to the homogeneous system $[A \mid \overrightarrow{0}]$ is $\vec{x}=\overrightarrow{0}$.

So $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is linearly independent if and only if $\frac{[A \mid \vec{O}] \text { has a unique solution. }}{r}$

Ex: Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right]\right\}$ linearly independent?

Solution: The homogeneous system is

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 1 & -2 \\
0 & 1 & 1
\end{array}\right] \sim R_{2}-2 R_{1}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \sim R_{3}-R_{2} } \\
& \sim {\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \sim R_{1}+R_{3}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] }
\end{aligned}
$$

(Remember, the right hand Side is $\overrightarrow{0}$)
The only solution is $\vec{x}=\overrightarrow{0}$.
\therefore The set is linearly independent.

Ex: Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 0\end{array}\right]\right\}$ linearly independent?

Solution: The homogeneous system is

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 0 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccc}
\frac{1}{0} & 0 & 3 \\
0 & 1 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]_{(R R E F)}
$$

The rank is 2, so
\# of parameters $=\#$ of columns $-\operatorname{Rank}=3-2=1$.

There are infinitely many solutions, so the set is linearly dependent.

The Solution is $\vec{x}=t\left[\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right], t \in \mathbb{R}$, so any such vector gives us a linear combination:

$$
-3\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
1 \\
3 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]!
$$

That's exactly right!

From §2.2: a consistent system has n - $\operatorname{Rank}(A)$ parameters, so $[A \mid \overrightarrow{0}]$ has a unique solution if and only if $n-\operatorname{Rank}(A)=0$. [i.e, $\underline{\operatorname{Rank}(A)=n}$, or equivalently, every column has a pivot.]

In terms of linear independence:

The columns of $A=\left[\begin{array}{llll}\vec{v}_{1} & \vec{V}_{2} & \cdots \vec{V}_{n}\end{array}\right]$ are linearly independent if and only if $\operatorname{Rank}(A)=n$.

An interesting consequence:
If $\left\{\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{n}\right\}$ is a linearly independent set of vectors in \mathbb{R}^{m}, then $n \leq m$.

Why?
Because if $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is linearly independent, then $\operatorname{Rank}(A)=n$ (by above). But then

$$
n=\operatorname{Rank}(A) \leq \min (m, n) \leq m
$$

So $n \leq m$!

Ex: Is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{c}-1 \\ -3 \\ 3\end{array}\right]\right\}$ linearly independent?
Solution: No WAY! By the above result, a linearly independent set in \mathbb{R}^{3} has at most 3 vectors!
(3) Basis Problems

To show that a set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a basis for \mathbb{R}^{m}, We must show that
(i) $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is linearly independent (so $A=\left[\vec{v}_{1}, \cdots \vec{v}_{n}\right]$ has rank $=n$)
(ii) $\operatorname{Span}\left\{\vec{V}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{n}\right\}=\mathbb{R}^{m} \quad$ (so $A=\left[\vec{v}_{1}, \cdots \vec{v}_{n}\right]$ has rank $=m$)

Note: This is only possible if $\underline{\underline{m=n}}$

$$
[\# \text { of rows }=\# \text { of columns }]
$$

The columns of $A=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ are a basis for \mathbb{R}^{n} if and only if $\operatorname{Rank}(A)=n$.

Consequence: Every basis for \mathbb{R}^{n} has exactly n vectors!

Ex: Is $\left\{\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?

Solution: We have that

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
3 & 1 & 2
\end{array}\right] \underset{R_{2}-R_{1}}{\sim}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
R_{3}-3 R_{1}
\end{array}\right] \underset{R_{3}-4 R_{2}}{\sim}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right] \underset{R_{3} \cdot\left(\frac{-1}{2}\right)}{\sim}} \\
& {\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \underset{R_{2}-R_{3}}{\sim}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \stackrel{R_{1}+R_{2}}{\sim}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

So Rank $=3=\#$ of columns (the set is linearly independent)
$=\#$ of rows (the set spans \mathbb{R}^{3})
$\therefore\left\{\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]\right\}$ is a basis for \mathbb{R}^{3} !

Theorem [Big Theorem, Version 1]
Let A be a matrix with n columns and n rows. The following are equivalent:
(1) The columns of A are linearly independent;
(2) The columns of A span \mathbb{R}^{n};
(3) The columns of A are a basis for \mathbb{R}^{n};
(4) $\operatorname{Rank}(A)=n$;
(5) $[A \mid \vec{O}]$ has a unique solution;
(6) $[A \mid \vec{b}]$ is consistent for all $\vec{b} \in \mathbb{R}^{n}$.

With a bit of work (see text) one can extend these ideas to prove the following:

If S is any subspace of \mathbb{R}^{n}, then any two bases for S have the same number of vectors

Definition: If S is a subspace of \mathbb{R}^{n} with a basis containing k vectors, we say that the dimension of S is k : $\operatorname{dim} S=k$

Ex: The standard basis $\left\{\overrightarrow{e_{1}}, \ldots, \overrightarrow{e_{n}}\right\} \quad($ see $\xi 1.7)$ is a basis for \mathbb{R}^{n} with n vectors, so $\operatorname{dim} \mathbb{R}^{n}=n$

Ex: From $\left\{1.7\right.$, a line in \mathbb{R}^{n} has dimension 1
a plane in \mathbb{R}^{n} has dimension 2
a hyperplane in \mathbb{R}^{n} has dimension $n-1$.

