\$2.3 - Applications to Spanning; Linear Independence Consider once again our first example from §2.1: This system can be written in a new way using vectors: $\begin{array}{c|c} X_1 & 1 \\ o \\ 2 \end{array} + \begin{array}{c} X_2 & 1 \\ - \end{array} + \begin{array}{c} X_3 & -2 \\ 1 \\ - 5 \end{array} = \begin{array}{c} 4 \\ 3 \\ 7 \end{array}$ columns of coefficient matrix Our solution was $\vec{X} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, and sure enough... $\begin{array}{c|c} 0 & 1 \\ 0 \\ z \end{array} + 2 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} -z \\ 1 \\ -5 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} ,$ Finding solutions to $[A | \vec{b}]$ So ---Finding linear combinations Finding points on the intersection of hyperplanes. \iff of the columns of A that equal 5. (Row Picture) (Column Picture)

This new perspective can help us solve some (formerly) tricky problems from Chapter 1.

D Spanning Problems

Let
$$\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$$
 be a set of vectors in \mathbb{R}^m , and let

$$A = \begin{bmatrix} \vec{v}_1, \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}$$

be the matrix whose columns are V, Vz, ..., Vn.

A vector
$$\vec{b} \in \mathbb{R}^{m}$$
 belongs to $\text{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, ..., \vec{v}_{n}\right\}$ if and
only if the system $[A|\vec{b}]$ is consistent.

If it is consistent, any solution
$$\vec{X} = \begin{bmatrix} x_i \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 gives a linear combination that equals \vec{E} :

$$X_1 \overrightarrow{V}_1 + X_2 \overrightarrow{V}_2 + \cdots + X_n \overrightarrow{V}_n = \overrightarrow{L}.$$

$$\begin{array}{c} E_{X}: Does \begin{bmatrix} -2\\ -3\\ 1 \end{bmatrix} \\ \end{array} \begin{array}{c} belong \\ to \\ \end{array} \begin{array}{c} Span \left\{ \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ -1\\ 5 \end{bmatrix}, \begin{bmatrix} 2\\ 1\\ 4 \end{bmatrix}, \begin{bmatrix} -1\\ -3\\ 3 \end{bmatrix} \right\}^{2} \\ \end{array}$$

Solution: Here
$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 1 & -1 & 1 & -3 \\ 1 & 5 & 4 & 3 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix}$.

$$\begin{aligned} Is & [A | \vec{b}] \quad consistent? \\ \begin{bmatrix} 1 & 1 & 2 & -1 & | & -2 \\ 1 & -1 & 1 & -3 & | & -3 \\ 1 & 5 & 4 & 3 & | & 1 \end{bmatrix} \stackrel{\sim}{R_2 - R_1} \begin{bmatrix} 1 & 1 & 2 & -1 & | & -2 \\ 0 & -2 & -1 & -2 & | & -1 \\ 0 & 4 & 2 & 4 & | & 3 \end{bmatrix} \stackrel{\sim}{R_3 + 2R_2} \\ \begin{bmatrix} 1 & 1 & 2 & -1 & | & -2 \\ 0 & -2 & -1 & -2 & | & -1 \\ 0 & 0 & 0 & 0 & | & 1 \end{bmatrix} \quad (REF) \\ The system is inconsistent, so \begin{bmatrix} -2 \\ -3 \\ 1 \end{bmatrix} is Not in the span! \end{aligned}$$

Ex: Does
$$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 belong to Span $\left\{ \begin{bmatrix} 1\\ 3\\ 4 \end{bmatrix}, \begin{bmatrix} 2\\ 7\\ 7 \end{bmatrix}, \begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 4 \end{bmatrix} \right\}^{?}$

 Solution:
 As an exercise, check that

 $\begin{bmatrix} 1 & 2 & 0 & | & | & | \\ 3 & 7 & | & | & | & 2 \\ 4 & 7 & -1 & 4 & | & 3 \end{bmatrix}$ \sim $\begin{bmatrix} 1 & 0 & -2 & 0 & | & -2 \\ 0 & 1 & | & 0 & | & | \\ 0 & 0 & 0 & | & | & 1 \end{bmatrix}$ (RREF)

This system is consistent, so
$$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 does belong
to this Span! The solution to the system is
 $\vec{X} = \begin{bmatrix} -z\\ 1\\ 0\\ 1 \end{bmatrix} + t \begin{bmatrix} 2\\ -1\\ 1\\ 0 \end{bmatrix}$, teR
So if $\vec{X} = \begin{bmatrix} -z\\ 1\\ 0\\ 1 \end{bmatrix}$ (or any other vector in the solution)
We have $(-z)\begin{bmatrix} 1\\ 3\\ 4 \end{bmatrix} + (1)\begin{bmatrix} 2\\ 7\\ 7 \end{bmatrix} + (0)\begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix} + (1)\begin{bmatrix} 1\\ 1\\ 4 \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$

Ex: Show that any vector in
$$\mathbb{R}^2$$
 can be written
as a linear combination of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
[This is Q4(a) of Assignment 4]

Solution: We need to show that the system
$$\begin{bmatrix} 1 & 0 & | & \vec{b} \\ 1 & 2 & | & \vec{b} \end{bmatrix}$$
is consistent for all \vec{b} .

But ...
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{\sim} R_1 = R_1 \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\sim} R_2 = R_1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} (REF)$$

The rank of $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$ is 2, so every row
has a leading 1; the system is always consistent!
 \therefore Every $\overline{b} \in \mathbb{R}^2$ belongs to $Span\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$.

Note: In §2.2 we saw that
$$[A|\vec{b}]$$
 is consistent for all vectors \vec{b} if and only if Rank(A) = M (# of equations)

An interesting consequence: If
$$Span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} = \mathbb{R}^m$$
, then $n \ge m$.
Why?
If $Span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} = \mathbb{R}^m$, then $Rank(A) = m$ (by above)
But then $\underline{m} = Rank(A) \le \min(m, n) \le n$
So $n \ge m$.

Solution: The homogeneous system is

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} R_2 - 2R_1 \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} R_3 - R_2$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (RREF)$$
(Revenber, the right hand Side is $\vec{0}$)

The only solution is
$$\vec{X} = \vec{O}$$
.
The set is linearly independent.

$$Ex: Is \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -z \\ 0 \end{bmatrix} \right\} \text{ linearly independent }?$$

Solution: The homogeneous system is $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} (RREF)$ The rank is 2, so

of parameters = # of columns - Rank = 3-2=1.

There are infinitely many solutions, so the set is
linearly dependent.
The solution is
$$\vec{X} = t \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$
, $t \in \mathbb{R}$, so any such
vector gives us a linear combination:
 $-3 \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ 3 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}!$
The set of vectors is
linearly independent exactly
when every column of A
has a pivot!
That's exactly right!

From
$$\$2.2$$
: a consistent system has $n - \operatorname{Rank}(A)$ parameters,
so $[A|\vec{o}]$ has a unique solution if and only if $\underline{n - \operatorname{Rank}(A) = 0}$.
 $[i.e., \operatorname{Rank}(A) = h, or equivalently, every column has a pivot.]$

The columns of
$$A = [\vec{v}_1 \ \vec{v}_2 \ \cdots \ \vec{v}_n]$$
 are linearly
independent if and only if $Rank(A) = n$.

An interesting consequence:
If
$$\{\vec{v}_i, \vec{v}_2, ..., \vec{v}_n\}$$
 is a linearly independent set of
vectors in \mathbb{R}^m , then $n \leq m$.
Why?
Because if $\{\vec{v}_i, \vec{v}_2, ..., \vec{v}_n\}$ is linearly independent, then
Rank(A) = h (by above). But then
 $\underline{n = \operatorname{Rank}(A) \leq \min(m, n) \leq M},$
So $n \leq m!$

Ex: Is
$$\left\{ \begin{bmatrix} 1\\ 1\\ 1\end{bmatrix}, \begin{bmatrix} 1\\ 5\\ 5\end{bmatrix}, \begin{bmatrix} 2\\ 4\\ 4\end{bmatrix}, \begin{bmatrix} -1\\ -3\\ 3\end{bmatrix} \right\}$$
 linearly independent?
Solution: NO WAY! By the above result, a linearly
independent set in \mathbb{R}^3 has at most 3 vectors!

- To show that a set $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is a basis for \mathbb{R}^m , We must show that
- (i) $\{\vec{v}_1, \dots, \vec{v}_n\}$ is linearly independent (so $\underline{A} = [\vec{v}_1 \dots \vec{v}_n]$ has rank = \underline{N})

(ii) Span
$$\left\{ \vec{v_1}, \vec{v_2}, \dots, \vec{v_n} \right\} = \mathbb{R}^m$$
 (so $A = \left[\vec{v_1}, \dots, \vec{v_n} \right]$ has rank = m)

Note: This is only possible if
$$\underline{M} = \underline{M}$$

 $\begin{bmatrix} \# \text{ of rows } = \# \text{ of columns} \end{bmatrix}$
The columns of $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}$ are a basis for
 \mathbb{R}^n if and only if $\operatorname{Rank}(A) = M$.

Consequence: Every basis for
$$\mathbb{R}^n$$
 has exactly n vectors!
Ex: Is $\left\{ \begin{bmatrix} 1\\1\\3 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$ a basis for \mathbb{R}^3 ?

Solution: We have that

$$\begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \\ 3 & 1 & 2 \end{bmatrix} \xrightarrow{R_2 - R_1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 4 & 2 \end{bmatrix} \xrightarrow{R_3 - 4R_2} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 - R_3} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
So Rank = $3 = #$ of columns (the set is linearly independent)
 $= #$ of rows (the set spans \mathbb{R}^3)

$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$$
 is a basis for $[\mathbb{R}^3]$.

Definition: If S is a subspace of
$$\mathbb{R}^n$$
 with a basis
containing K vectors, we say that the dimension of S is K:
dim $S = K$

Ex: The standard basis
$$\{\vec{e}_{1,\dots},\vec{e}_{n}\}$$
 (see §1.7) is a basis for \mathbb{R}^{n} with n vectors, so dim $\mathbb{R}^{n} = n$