Chapter 2 - Systems of Linear Equations
§2.1 - Gaussian Elimination

In this chapter well be looking at linear equations!
Ex: $\quad x_{1}+3 x_{2}=8$
Ex: $2 x_{1}-x_{2}=-5$

In general: $\quad a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$
where $a_{1}, a_{2}, \ldots, a_{n}, b \in \mathbb{R}$.

In particular, well be interested in finding Solutions to these equations!

Ex: $\vec{x}=\left[\begin{array}{l}5 \\ 1\end{array}\right]$ is a solution to $x_{1}+3 x_{2}=8$,

$$
\text { because }(5)+3(1)=8 \text {. }
$$

Check: $\left[\begin{array}{l}8 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{c}-4 \\ 4\end{array}\right],\left[\begin{array}{c}0 \\ 8 / 3\end{array}\right]$ are solutions as well.

Solutions to $x_{1}+3 x_{2}=8$

$$
\text { form a line in } \mathbb{R}^{2} \text { : }
$$

Solutions to $x_{1}+x_{2}+2 x_{3}=4$ form a plane in \mathbb{R}^{3} :

In general, the solutions to $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b$ form a hyperplane in \mathbb{R}^{n}.

Instead of finding the solution to just one linear equation, well be interested in solving several equations simultaneously!

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \quad=\quad \text { system of } \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered} \quad \text { linear equations }
$$

m rows $\longleftrightarrow m$ equations

$$
n \text { columns } \longleftrightarrow n \text { unknowns }
$$

$$
\begin{aligned}
& a_{i j}=\text { coefficient of } x_{j} \\
& \text { in } i^{\text {th }} \text { equation. }
\end{aligned}
$$

Since each row is a hyperplane in \mathbb{R}^{n}
Solutions to system $=$ Points in intersection of linear equations of hyperplanes

In \mathbb{R}^{2}, this is an intersection of lines:

In \mathbb{R}^{3}, this is an intersection of planes:

(Solution is a line)

(Solution is a point)

(No solution)

Solving a System: Gaussian Elimination
Consider the system

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}=4 \\
2 x_{2}+x_{3}=3 \\
2 x_{1}+x_{2}-5 x_{3}=7
\end{array}
$$

We will solve this system by eliminating some of the variables from some of the equations without changing the solution set!

Two systems with the same solution set will be called equivalent (denoted by \sim)

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3}=4 & \left(R_{1}\right) \\
2 x_{2}+x_{3}=3 & \left(R_{2}\right) \\
2 x_{1}+x_{2}-5 x_{3}=7 & \left(R_{3}\right)
\end{aligned}
$$

$\sim \operatorname{Add}(-2) R_{1}$ to R_{2}

$$
\begin{aligned}
& x_{1}+x_{2}-2 x_{3}=4 \\
& 2 x_{2}+x_{3}=3 \\
&\left.-x_{2}-R_{3}\right)\left(R_{2}\right) \\
&=-1 \\
&\left(R_{3}\right)
\end{aligned}
$$

Any solution to the first system is also a solution to the second.

Since this operation can be reversed (by adding R, to R_{2}, any solution to the second system is also a solution to the first.
\therefore The systems are equivalent.
$\sim \operatorname{Swap} R_{2}$ and $R_{3} \longrightarrow \begin{aligned} & \text { Reordering equations does } \\ & \text { not change solution set. }\end{aligned}$

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3} & =4 \\
-x_{2}-x_{3} & =-1 \\
\left.2 R_{2}\right) & \left(R_{2}\right) \\
2 x_{3} & =3
\end{aligned}\left(R_{3}\right)
$$

$\sim \quad$ Multiply R_{2} by (-1)

$$
\begin{aligned}
& x_{1}+x_{2}-2 x_{3}=4 \\
& x_{2}+x_{3}=1 \\
&\left.2 R_{2}\right) \\
&\left(R_{2}\right)
\end{aligned}
$$

$\sim \operatorname{Add}(-2) R_{2}$ to R_{3}

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3} & =4 \\
x_{2}+x_{3} & =1 \\
\left.-R_{3}\right) & \left(R_{2}\right) \\
- & \left(R_{3}\right)
\end{aligned}
$$

From $R_{3}: \quad \underline{x_{3}}=-1$.
From $R_{2}: \quad X_{2}+X_{3}=1 \quad \Rightarrow \quad X_{2}+(-1)=1$

$$
\Rightarrow \quad x_{2}=2
$$

From $R_{1}: \quad X_{1}+X_{2}-2 X_{3}=4 \Rightarrow X_{1}+(2)-2(-1)=4$

$$
\Rightarrow \quad x_{1}=0
$$

Since the final system is equivalent to the original, our Solution is $\vec{x}=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$. (check!)

The final system,

$$
\begin{aligned}
x_{1}+x_{2}-2 x_{3} & =4 \\
x_{2}+x_{3} & =1 \\
-x_{3} & =1
\end{aligned}
$$

has a very special form which makes it easy to solve.

Definition: A system of linear equations is said to be in row echelon form (REF) if the leading variable in every row (the first variable with non-zero coefficient) is strictly to the right of the leading variable in the row above.

Leading variables on lower rows are strictly to the right:

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}=4 \\
L \begin{array}{|c}
x_{2} \\
L
\end{array} x_{3}=1 \\
L-x_{3}=1
\end{array}
$$

Fact: Every system can be put into REF using a Sequence of elementary row operations (EROS).

EROS: (1) Multiply an equation by a non-zero constant (2) Swap two equations
(3) Add a multiple of one equation to another equation

Using EROs to reduce a system to REF is called Gaussian Elimination or row reduction.

Solving for each x_{i} from the bottom up is called back substitution.

Ex: Using Gaussian elimination, find the solution set for

$$
\begin{aligned}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4} & =10 \\
2 x_{1}+4 x_{2}+7 x_{3}+10 x_{4} & =25
\end{aligned}
$$

Solution: Let's make the leading variable in R_{2} occur to the right of the leading variable in R_{1} (i.e, x_{1})

To eliminate x_{1} from R_{2}, add $(-2) R_{1}$ to R_{2}

$$
\begin{array}{rrr}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=10 & \sim & x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=10 \\
2 x_{1}+4 x_{2}+7 x_{3}+10 x_{4}=25 & R_{2}-2 R_{1} & x_{3}+2 x_{4}=5 \\
(R E F)
\end{array}
$$

Note: Our two equations do not completely determine x_{3} and X_{4} : one can be chosen arbitrarily!

We always pick the non-leading variable to be the arbitrary one (here it's X_{4}). This is called a free variable!
x_{2} is not a leading variable, so it's free too.
Since free variables can be chosen arbitrarily, we write

$$
x_{2}=s, s \in \mathbb{R} \quad \text { and } \quad x_{4}=t, t \in \mathbb{R}
$$

(s and t are called parameters.)

Now use back substitution to find the leading variables! From $R_{2}: \quad x_{3}=5-2 x_{4}=5-2 t$

From R_{1}

$$
\begin{aligned}
x_{1} & =10-2 x_{2}-3 x_{3}-4 x_{4} \\
& =10-2 s-3(5-2 t)-4 t=-5-2 s+2 t
\end{aligned}
$$

This means that the general solution to our system of equations is

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-5-2 s+2 t \\
s \\
5-2 t \\
t
\end{array}\right], \quad s, t \in \mathbb{R}
$$

OR

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-5 \\
0 \\
5 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
2 \\
0 \\
-2 \\
1
\end{array}\right], s, t \in \mathbb{R}
$$

Representing Systems with Matrices
Instead of writing $x_{1}, x_{2}, x_{3}, \ldots$ in a system of linear equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Well just record the coefficients $a_{i j}$ and right - hand side $\vec{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right]$ in a matrix:

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\text { the system's } \\
& {[A \mid \vec{b}]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right]=\text { the system's }}
\end{aligned}
$$

Ex: The system $3 x_{1}+8 x_{2}-18 x_{3}+x_{4}=35$

$$
\begin{aligned}
x_{2}-3 x_{3}+x_{4} & =-1 \\
x_{1}+2 x_{2}-4 x_{3} & =11
\end{aligned}
$$

has coefficient matrix $A=\left[\begin{array}{cccc}3 & 8 & -18 & 1 \\ 0 & 1 & -3 & 1 \\ 1 & 2 & -4 & 0\end{array}\right]$ and augmented matrix $[A \mid \vec{b}]=\left[\begin{array}{cccc|c}3 & 8 & -18 & 1 & 35 \\ 0 & 1 & -3 & 1 & -1 \\ 1 & 2 & -4 & 0 & 11\end{array}\right]$

Definition: A matrix is in row echelon form (REF) if (1) All rows that are fully O occur at the bottom, and
(2) The first non-zero entry in a row, called the row's leading entry or pivot, is to the right of the leading entry from all higher rows.

Ex: $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$ is not in row echelon form because the leading entry in R_{3} is NOT to the right of the leading entry in R_{2}.

$$
\left[\begin{array}{lllll}
1 & 3 & 5 & 6 & 7 \\
2 & 4 & 5 & 8 & 8
\end{array}\right]
$$

is not in REF because the leading entry of R_{2} is beneath the leading entry of R_{1}, not to the right.
$\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 1\end{array}\right]$
is not in REF because there is a row of zeros above a non-zero row. Both $\left[\begin{array}{rrrrr}1 & 1 & -1 & 3 & 0 \\ 0 & 2 & 1 & 4 & 2 \\ 0 & 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$ and $\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ are in REF.

Ex: Let's solve our first system: $\quad x_{1}+x_{2}-2 x_{3}=4$

$$
\begin{array}{r}
2 x_{2}+x_{3}=3 \\
2 x_{1}+x_{2}-5 x_{3}=7
\end{array}
$$

using matrices!

Put this next to row where operation occurs. Here it's in row 3

Swap R_{2} and R_{3}

$$
[\begin{array}{ccc|c}
1 & 1 & -2 & 4 \\
0 & 2 & 1 & 3 \\
2 & 1 & -5 & 7
\end{array} \overbrace{R_{3}-2 R_{1}} \sim\left[\begin{array}{ccc|c}
1 & 1 & -2 & 4 \\
0 & 2 & 1 & 3 \\
0 & -1 & -1 & -1
\end{array}\right] R_{2} \uparrow R_{3}
$$

Multiply R_{2} by (-1)

$$
\left.\begin{array}{l}
\left.\sim\left[\begin{array}{ccc|c}
1 & 1 & -2 & 4 \\
0 & -1 & -1 & -1 \\
0 & 2 & 1 & 3
\end{array}\right] \begin{array}{ccc|c}
1 \\
(-1) R_{2} \\
0 & 1 & 1 & 1 \\
0 & 2 & 1 & 3
\end{array}\right] R_{3}-2 R_{2}
\end{array}\right] \begin{array}{r}
1 \\
\sim
\end{array} \begin{array}{r}
\left.\begin{array}{ccc|c}
1 & 1 & -2 & 4 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]
\end{array}
$$

With back substitution:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]
$$

Ex: Find the general solution for

$$
\begin{aligned}
3 x_{1}+8 x_{2}-18 x_{3}+x_{4} & =35 \\
x_{2}-3 x_{3}+x_{4} & =-1 \\
x_{1}+2 x_{2}-4 x_{3} & =11
\end{aligned}
$$

by row reducing the corresponding augmented matrix.

Solution: The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
3 & 8 & -18 & 1 & 35 \\
0 & 1 & -3 & 1 & -1 \\
1 & 2 & -4 & 0 & 11
\end{array}\right] R_{3} \imath R_{1} \sim\left[\begin{array}{cccc|c}
1 & 2 & -4 & 0 & 11 \\
0 & 1 & -3 & 1 & -1 \\
3 & 8 & -18 & 1 & 35
\end{array}\right]_{R_{3}-3 R_{1}}} \\
& \sim\left[\begin{array}{cccc|c}
1 & 2 & -4 & 0 & 11 \\
0 & 1 & -3 & 1 & -1 \\
0 & 2 & -6 & 1 & 2
\end{array} R_{R_{3}-2 R_{2}} \sim\left[\begin{array}{cccc|c}
1 & 2 & -4 & 0 & 11 \\
0 & 1 & -3 & 1 & -1 \\
0 & 0 & 0 & -1 & 4
\end{array}\right]_{(\text {REF !) }}\right.
\end{aligned}
$$

Going back to a system:

$$
\begin{aligned}
x_{1}+2 x_{2}-4 x_{3} & =11 \\
x_{2}-3 x_{3}+x_{4} & =-1 \\
-x_{4} & =4
\end{aligned}
$$

Since X_{3} is not a leading variable, it is free:

$$
x_{3}=t, \quad t \in \mathbb{R}
$$

With back substitution we have

$$
-x_{4}=4 \quad \Rightarrow \quad x_{4}=-4
$$

$$
\begin{aligned}
x_{2}-3 x_{3}+x_{4}=-1 \quad \Rightarrow \quad x_{2} & =-1+3 x_{3}-x_{4} \\
& =-1+3 t-(-4) \\
& =3+3 t
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+2 x_{2}-4 x_{3}=11 \quad \Rightarrow \quad x_{1} & =11-2 x_{2}+4 x_{3} \\
& =11-2(3+3 t)+4 t \\
& =\underline{5-2 t}
\end{aligned}
$$

The general solution: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}5-2 t \\ 3+3 t \\ t \\ -4\end{array}\right], \quad t \in \mathbb{R}$
$O R$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
5 \\
3 \\
0 \\
-4
\end{array}\right]+t\left[\begin{array}{c}
-2 \\
3 \\
1 \\
0
\end{array}\right], \quad t \in \mathbb{R}
$$

Ex: Find the general solution for

$$
\begin{aligned}
\frac{1}{2} x_{1}+x_{2}+\frac{1}{2} x_{3} & =4 \\
x_{2}+4 x_{3} & =1 \\
x_{1}+3 x_{2}+5 x_{3} & =2
\end{aligned}
$$

Solution: The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
1 / 2 & 1 & 1 / 2 & 4 \\
0 & 1 & 4 & 1 \\
1 & 3 & 5 & 2
\end{array}\right] \sim R_{1} \sim\left[\begin{array}{lll|l}
1 & 2 & 1 & 8 \\
0 & 1 & 4 & 1 \\
1 & 3 & 5 & 2
\end{array}\right] R_{3}-R_{1}}
\end{aligned} \sim
$$

Going back to a system...

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =8 \\
x_{2}+4 x_{3} & =1 \\
0 x_{1}+0 x_{2}+0 x_{3} & =-7 \quad(\text { uh oh...) }
\end{aligned}
$$

Note: The left hand side of R_{3} is 0 . Since the right hand side of R_{3} is non-zero, there is no solution.

A system with no solution is called inconsistent.
A system with at least one solution is called consistent.

Let's summarize what we saw in the examples:
Theorem: Suppose that $[A \mid \vec{b}]$ is the augmented matrix for a system of linear equations, and $[S \mid \vec{c}]$ is the REF of $[A \mid \vec{b}]$.
(1) The system is inconsistent if and only if some row of $[S \mid \vec{c}]$ has the form

$$
\left[\begin{array}{llll|l}
0 & 0 & \cdots & 0 & c
\end{array}\right]
$$

where $c \neq 0$.
(2) If the system is consistent, then either
(a) \# of pivots in $S=\#$ of variables, in which case there is a unique solution,

OR
(b) \# of pivots in $S<\#$ of variables, in which case there are infinitely many Solutions.

