In general:
$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where $a_1, a_2, \dots, a_n, b \in \mathbb{R}$.

In particular, we'll be interested in finding Solutions to these equations!

Ex:
$$\vec{X} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
 is a solution to $\mathcal{R}_1 + 3\mathcal{R}_2 = 8$,
because $(5) + 3(1) = 8$.

<u>Check:</u> $\begin{bmatrix} 8 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} -4 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 8/3 \end{bmatrix}$ are solutions as well.

form a <u>hyperplane</u> in Rⁿ.

Instead of finding the solution to just one linear equation, we'll be interested in solving several equations simultaneously!

 $\begin{array}{rcl} a_{11} X_{1} + a_{12} X_{2} + \cdots + a_{1n} X_{n} &= b_{1} \\ a_{21} X_{1} + a_{22} X_{2} + \cdots + a_{2n} X_{n} &= b_{2} \\ \vdots &\vdots \\ a_{m1} X_{1} + a_{m2} X_{2} + \cdots + a_{mn} X_{n} &= b_{m} \end{array}$

$$m rows \iff m equations$$

 $n columns \iff n unknowns$
 $a_{ij} = coefficient of X_j$
 $a_{ij} = in i^{th} equation.$

Since each row is a hyperplane in Rⁿ Solutions to system = Points in intersection of linear equations of hyperplanes

In R², this is an intersection of lines:

In R³, this is an intersection of planes:

(Solution is a line) (Solution is a point) (No solution)

Solving a System : Gaussian Elimination
Consider the system
$$X_1 + X_2 - 2X_3 = 4$$

 $2X_2 + X_3 = 3$
 $2X_1 + X_2 - 5X_3 = 7$

Two systems with the same solution set will be called equivalent (denoted by
$$\sim$$
)

$$X_{1} + X_{2} - 2x_{3} = 4 \quad (R_{1})$$

$$2 \times_{2} + X_{3} = 3 \quad (R_{2})$$

$$2 \times_{1} + \times_{2} - 5 \times_{3} = 7 \quad (R_{3})$$

$$\sim$$
 Add (-2)R₁ to R₂

$$X_{1} + X_{2} - 2x_{3} = 4 \quad (R_{1})$$

$$2 \times_{2} + X_{3} = 3 \quad (R_{2})$$

$$-X_{2} - X_{3} = -1 \quad (R_{3})$$

Any solution to the first system is also a solution to the second.

Since this operation can be reversed (by adding R, to Rz), any solution to the second system is also a solution to the first.

$$\sim \quad \text{Swap } R_2 \text{ and } R_3 \qquad \qquad \text{Reordering exampts}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_1) \qquad \qquad \text{not change}$$

$$X_1 + X_2 - 2X_3 = -1 \qquad (R_2) \qquad \qquad \text{aguivalent.}$$

$$2 \times_2 + X_3 = 3 \qquad (R_3)$$

$$\sim \quad \text{Multiply } R_2 \text{ by (-1)} \qquad \qquad \text{This step is doesn't change}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_1) \qquad \qquad \text{These Systems}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_2) \qquad \qquad \text{aguivalent.}$$

$$X_2 + X_3 = 3 \qquad (R_3)$$

$$\sim \quad \text{Add (-2)} R_2 \text{ to } R_3 \qquad \qquad \text{Same as above}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_1) \qquad \qquad \text{These Systems}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_1) \qquad \qquad \text{These Systems}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_1) \qquad \qquad \text{These Systems}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_2) \qquad \qquad \text{These Systems}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_2) \qquad \qquad \text{These Systems}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_2) \qquad \qquad \text{These Systems}$$

$$X_1 + X_2 - 2X_3 = 4 \qquad (R_3)$$

$$\qquad \text{From } R_3: \qquad X_3 = -1 \qquad \qquad \text{These Systems}$$

$$X_2 + X_3 = 1 \qquad \implies X_2 + (-1) = 1$$

nge solution set. systems are lent.

p is reversible and hange solution set Systems are

ent.

above ...

 $\Rightarrow X_2 = 2$

 $\Rightarrow X_1 = 0$

From R1: $X_1 + X_2 - 2X_3 = 4 \implies X_1 + (2) - 2(-1) = 4$

rems are equivalent.

Since the final system is equivalent to the original,
our solution is
$$\vec{X} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$
. (check!)

The final system,
$$X_1 + X_2 - 2x_3 = 4$$

 $X_2 + x_3 = 1$
 $-X_3 = 1$,

has a very special form which makes it easy to solve.

Definition: A system of linear equations is said
to be in row echelon form (REF) if the leading
variable in every row (the first variable with
non-zero coefficient) is strictly to the right of
the leading variable in the row above.
Leading variables on
$$X_1 + X_2 - 2X_3 = 4$$

lower rows are strictly $y = \frac{x_2 + x_3}{y - x_3} = 1$ to the right:

Ex: Using Gaussian elimination, find the solution set for

$$X_1 + 2X_2 + 3X_3 + 4X_4 = 10$$
 (R1)
 $2X_1 + 4X_2 + 7X_3 + 10X_4 = 25$ (R2)

Solution: Let's make the leading variable in
$$R_2$$
 occur
to the right of the leading variable in R_1 (i.e., x_1)

$$X_{1} + 2X_{2} + 3X_{3} + 4X_{4} = 10 \qquad \sim \qquad X_{1} + 2X_{2} + 3X_{3} + 4X_{4} = 10$$

$$2X_{1} + 4X_{2} + 7X_{3} + 10X_{4} = 25 \qquad R_{2} - 2R_{1} \qquad \qquad X_{3} + 2X_{4} = 5$$
(REF)

$$X_2$$
 is not a leading variable, So it's free too.
Since free variables can be chosen arbitrarily, we write
 $X_2 = 5$, SER and $X_4 = t$, tER
(S and t are called parameters.)

Now use back substitution to find the leading variables!
From Rz:
$$X_3 = 5 - 2X_4 = 5 - 2t$$

From
$$R_1$$
: $X_1 = 10 - 2X_2 - 3X_3 - 4X_4$
= $10 - 2S - 3(5 - 2t) - 4t = -5 - 2S + 2t$

This means that the general solution to our system
of equations is
$$\begin{bmatrix} x_i \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5-2s+2t \\ 5-2t \\ t \end{bmatrix}, \quad s,t \in \mathbb{R}$$

OR

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix}^{2} \begin{bmatrix} -5 \\ 0 \\ 5 \\ 0 \end{bmatrix}^{2} + S \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{2} + t \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}^{2}, \text{ s, t \in \mathbb{R}}$$

$$\begin{array}{c} y_{1} \\ y_{2} \\ z_{3} \\ z_{4} \end{bmatrix}^{2} \begin{bmatrix} -5 \\ 0 \\ 5 \\ 0 \end{bmatrix}^{2} \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}^{2} + t \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}^{2}, \text{ s, t \in \mathbb{R}}$$

$$\begin{array}{c} y_{1} \\ y_{2} \\ z_{3} \\ z_{4} \end{bmatrix}^{2} \begin{bmatrix} -5 \\ 0 \\ 5 \\ 0 \end{bmatrix}^{2} \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}^{2} + t \begin{bmatrix} 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}^{2}, \text{ s, t \in \mathbb{R}}$$

Representing Systems with Matrices

Instead of writing X1, X2, X3, ... in a system of linear equations

$$\begin{array}{rcl}
\alpha_{11} \times_{1} + \alpha_{12} \times_{2} + & \cdots + \alpha_{1n} \times_{n} &= b_{1} \\
\alpha_{21} \times_{1} + \alpha_{22} \times_{2} + & \cdots + \alpha_{2n} \times_{n} &= b_{2} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{m1} \times_{1} + \alpha_{m2} \times_{2} + & \cdots + \alpha_{mn} \times_{n} &= b_{m}
\end{array}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \text{the system's}$$

$$Coefficient matrix$$

$$\begin{bmatrix} A | \vec{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{mn} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \text{the system's}$$

$$augmented matrix$$

Ex: The system
$$3x_1 + 8x_2 - 18x_3 + x_4 = 35$$

 $x_2 - 3x_3 + x_4 = -1$
 $x_1 + 2x_2 - 4x_3 = 11$

has coefficient matrix
$$A = \begin{bmatrix} 3 & 8 & -18 & 1 \\ 0 & 1 & -3 & 1 \\ 1 & 2 & -4 & 0 \end{bmatrix}$$

and augmented matrix $[A[\vec{b}] = \begin{bmatrix} 3 & 8 & -18 & 1 & | & 35 \\ 0 & 1 & -3 & 1 & | & -1 \\ 1 & 2 & -4 & 0 & | & 1 \end{bmatrix}$

<u>Definition</u>: A matrix is in row echelon form (<u>REF</u>) if (1) All rows that are fully O occur at the bottom, and

$$\begin{bmatrix} 1 & 3 & 5 & 6 & 7 \end{bmatrix}$$
 is not in REF because the leading
24588 entry of Rz is beneath the leading entry
of R1, not to the right.

1 1 is not in REF because there is a 0 0 0 1 row of Zeros above a non-zero row.

Both $\begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 2 & 1 & 4 & 2 \\ 0 & 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ are in REF.

Ex: Let's solve our first system:
$$X_1 + X_2 - 2x_3 = 4$$

 $2x_2 + X_3 = 3$
 $2x_1 + x_2 - 5x_3 = 7$

using matrices!

Put this next to row where
operation occurs. Here it's in row 3 . Swap
$$R_2$$
 and R_3
$$\begin{bmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 2 & 1 & 3 \\ 2 & 1 & -5 & 7 \end{bmatrix} \bigvee_{R_3 - 2R_1} \begin{bmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 2 & 1 & 3 \\ 0 & -1 & -1 & | & -1 \end{bmatrix} \xrightarrow{R_2 + R_3} R_2 + R_3$$

$$\sim \begin{bmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & -1 & | & 1 \end{bmatrix} \longrightarrow \begin{array}{c} X_{1} + X_{2} - 2X_{3} = -4 \\ X_{2} + X_{3} = | \\ -X_{3} = | \end{array}$$

With back substitution:

$$\begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix} .$$

Ex: Find the general solution for

$$3x_1 + 8x_2 - 18x_3 + x_4 = 35$$

 $x_2 - 3x_3 + x_4 = -1$
 $x_1 + 2x_2 - 4x_3 = 11$

by row reducing the corresponding augmented matrix.

Solution: The augmented matrix is

$$\begin{bmatrix} 3 & 8 & -18 & 1 & 35 \\ 0 & 1 & -3 & 1 & -1 \\ 1 & 2 & -4 & 0 & 11 \end{bmatrix} R_3 \downarrow R_1 \sim \begin{bmatrix} 1 & 2 & -4 & 0 & |1| \\ 0 & 1 & -3 & 1 & -1 \\ 3 & 8 & -18 & 1 & 35 \end{bmatrix} R_3 - 3R_1$$

$$\sim \begin{bmatrix} 1 & 2 & -4 & 0 & |1| \\ 0 & 1 & -3 & 1 & |-1 \\ 0 & 2 & -6 & 1 & 2 \end{bmatrix} R_3 - 2R_2 \sim \begin{bmatrix} 1 & 2 & -4 & 0 & |1| \\ 0 & 1 & -3 & 1 & |-1 \\ 0 & 0 & 0 & -1 & |4 \end{bmatrix} (REF!)$$

Giving back to a system:

$$X_1 + 2 \times_2 - 4 \times_3 = ||$$

$$X_2 - 3 \times_3 + \times_4 = -|$$

$$- \times_4 = 4$$

Since
$$X_3$$
 is not a leading variable, it is free:
 $X_3 = t$, $t \in \mathbb{R}$.

With back substitution we have

$$-\chi_{4} = 4 \implies \chi_{4} = -4$$

$$X_2 - 3X_3 + X_4 = -1 \implies X_2 = -1 + 3X_3 - X_4$$

= -1 + 3t - (-4)
= 3 + 3t

$$X_{1} + 2X_{2} - 4X_{3} = || \implies X_{1} = || - 2X_{2} + 4X_{3}$$
$$= || - 2(3+3k) + 4t$$
$$= 5 - 2t$$

The general solution:
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5-2t \\ 3+3t \\ t \\ -4 \end{bmatrix}$$
, $t \in \mathbb{R}$

$$\begin{array}{c} OR\\ \begin{bmatrix} X_1\\ X_2\\ X_3\\ X_4 \end{bmatrix} = \begin{bmatrix} 5\\ 3\\ 0\\ -4 \end{bmatrix} + t \begin{bmatrix} -2\\ 3\\ 1\\ 0\\ 0 \end{bmatrix}, \quad t \in \mathbb{R} \end{array}$$

Ex' Find the general solution for

$$\frac{1}{2}X_{1} + X_{2} + \frac{1}{2}X_{3} = 4$$

$$X_{2} + 4X_{3} = 1$$

$$X_{1} + 3X_{2} + 5X_{3} = 2$$

Solution: The augmented matrix is

$$\begin{bmatrix} V_2 & 1 & V_2 & 4 \\ 0 & 1 & 4 & 1 \\ 1 & 3 & 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 8 \\ 0 & 1 & 4 & 1 \\ 1 & 3 & 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 8 \\ 0 & 1 & 4 & 1 \\ 0 & 1 & 4 & 1 \\ 0 & 1 & 4 & -6 \end{bmatrix} \xrightarrow{\sim}_{R_3-R_2} \begin{bmatrix} 1 & 2 & 1 & 8 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & -7 \end{bmatrix}$$
(REF)
Going back to a sustem...

$$X_1 + 2X_2 + X_3 = 8$$

$$X_2 + 4X_3 = 1$$

$$OX_1 + OX_2 + OX_3 = -7$$
(uh oh...)
Note: The left hand side of Rs is 0. Since the right hand
side of Rs is non-zero, there is no solution.
A system with no solution is called inconsistent.
A system with at least one solution is called consistent.

Let's summarize what we saw in the examples:
Theorem: Suppose that
$$[A|B]$$
 is the augmented
matrix for a system of linear equations, and $[S|T]$
is the REF of $[A|B]$.
(1) The system is inconsistent if and only if some
row of $[S|T]$ has the form
 $[0 \ 0 \ -- \ 0 \ C]$
where $c \neq 0$.
(2) If the system is consistent, then either
(a) # of pivots in S = # of variables,
in which case there is a unique solution,
OR
(b) # of pivots in S < # of variables,
in which case there are infinitely many
solutions.