$\$ 1.7$ - Spanning Sets; Linear Independence ($\$ 1.2$ in text)

Last time we proved that if $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is a set of vectors in \mathbb{R}^{n}, then

$$
S=\left\{t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k} \mid t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}\right\}
$$

is a subspace of \mathbb{R}^{n}.

This subspace is so important that we give it a special name:

Definition: The subspace

$$
S=\left\{t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k} \mid t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}\right\}
$$

is called the subspace spanned by $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$
We write

$$
S=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}=\operatorname{span} B .
$$

We say that B is a spanning set for S, or that 12 spans S.

Ex: If \vec{v} is a non-zero vector in \mathbb{R}^{2}, then

$$
\mathcal{L}=\operatorname{span}\{\stackrel{\rightharpoonup}{v}\}=\{t \stackrel{\rightharpoonup}{v}: t \in \mathbb{R}\}
$$

is a line through the origin. The set $\{\vec{v}\}$ is a spanning set for $\mathcal{L}(\operatorname{or}\{\stackrel{\rightharpoonup}{v}\} \operatorname{spans} \mathcal{L})$.

Note: The sets $\{-\vec{v}\},\{2 \vec{v}\}$, and $\left\{\frac{1}{3} \vec{v}\right\}$ are all spanning sets for \mathcal{L} as well!

Q: What if instead we have two vectors \vec{v}_{1}, \vec{v}_{2} ?
What does span $\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$ look like?

Exi If $\vec{v}_{1}=\left[\begin{array}{c}1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, then

$$
\begin{aligned}
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\} & =\left\{t_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]: t_{1}, t_{2} \in \mathbb{R}\right\} \\
& =\left\{\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]: t_{1,} t_{2} \in \mathbb{R}\right\}=\mathbb{R}^{2}
\end{aligned}
$$

So $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}=\mathbb{R}^{2}$, the whole 2 -dimensional plane

Ex: If $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}-3 \\ 0\end{array}\right]$, then

$$
\begin{aligned}
\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\} & =\left\{t_{1}\left[\begin{array}{c}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{c}
-3 \\
0
\end{array}\right]: t_{1}, t_{2} \in \mathbb{R}\right\} \\
& =\left\{\left(t_{1}-3 t_{2}\right)\left[\begin{array}{l}
1 \\
0
\end{array}\right]: t_{1}, t_{2} \in \mathbb{R}\right\} \\
& =\left\{t\left[\begin{array}{c}
1 \\
0
\end{array}\right]: t \in \mathbb{R}\right\}
\end{aligned}
$$

So $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$, a line in \mathbb{R}^{2}.

That's weird... we got
a plane in the first example but only a line in the second example...

Why did that happen?

Note: The vector \vec{v}_{2} in the second example was a multiple of \vec{V}_{1}, so it didn't contribute anything to $\operatorname{span}\left\{\vec{V}_{1}, \vec{V}_{2}\right\}$.

We found that

$$
\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\operatorname{Span}\left\{\vec{v}_{1}\right\}
$$

So instead of spanning a plane, they only spanned a line.

Let's examine this in \mathbb{R}^{3} ?

Ex: If $\vec{v}_{1}=\left[\begin{array}{c}2 \\ -2 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-3 \\ 3 \\ 0\end{array}\right]$, and $\vec{V}_{3}=\left[\begin{array}{c}\sqrt{5} \\ -\sqrt{5} \\ 0\end{array}\right]$, then

$$
\begin{aligned}
\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} & =\left\{t_{1}\left[\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{c}
-3 \\
3 \\
0
\end{array}\right]+t_{3}\left[\begin{array}{c}
\sqrt{5} \\
-\sqrt{5} \\
0
\end{array}\right]: t_{1}, t_{2}, t_{3} \in \mathbb{R}\right\} \\
& =\left\{\left(2 t_{1}-3 t_{2}+\sqrt{5} t_{3}\right)\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
0
\end{array}\right]: t_{1}, t_{2}, t_{3} \in \mathbb{R}\right\} \\
& =\left\{t\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]: t \in \mathbb{R}\right\}
\end{aligned}
$$

So, $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\right\}$.

Ex: If $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$, then

$$
\begin{aligned}
& \vec{V}_{2}=\vec{V}_{1}+\vec{V}_{3} \text {, So } \\
& \operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\left\{t_{1}\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]+t_{2}\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]+t_{3}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]: t_{1}, t_{2}, t_{3} \in \mathbb{R}\right\} \\
&=\left\{t_{1}\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]+t_{2}\left(\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]\right)+t_{3}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]: t_{1}, t_{2}, t_{3} \in \mathbb{R}\right\} \\
&=\left\{\left(t_{1}+t_{2}\right)\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]+\left(t_{2}+t_{3}\right)\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]: t_{1}, t_{2}, t_{3} \in \mathbb{R}\right\} . \\
& \Rightarrow \operatorname{Span}\left\{\vec{v}_{1}, \vec{V}_{2}, \vec{V}_{3}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]\right\} .
\end{aligned}
$$

Theorem: Let $\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{k}$ be vectors in \mathbb{R}^{n}.
If v_{k} can be written as a linear combination of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k-1}$ (i.e., $\vec{v}_{k}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k-1} \vec{v}_{k-1}$), then

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k-1}\right\}
$$

If there is a vector $\vec{v}_{i} \in\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ that can be written as a linear combination of the other vectors, then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{k}\right\}$ will be called linearly dependent.

If this is not possible, well say that $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly independent.

Ex: $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0\end{array}\right]\right\}$ is linearly dependent, as $\left[\begin{array}{c}-3 \\ 0\end{array}\right]=-3\left[\begin{array}{l}1 \\ 0\end{array}\right]$. $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]\right\}$ is linearly dependent, as $\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]+\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$.

Note: If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent, then there is a vector \vec{v}_{i} and scalars $t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}$ such that

$$
\vec{v}_{i}=t_{1} \vec{v}_{1}+\cdots+t_{i-1} \vec{v}_{i-1}+t_{i+1} \vec{v}_{i+1}+\cdots+t_{k} \vec{v}_{k}
$$

By moving \vec{v}_{i} to the other side, we get

$$
\begin{gathered}
t_{1} \vec{V}_{1}+\cdots+t_{i-1} \vec{v}_{i-1}-\vec{V}_{i}+t_{i+1} \vec{V}_{i+1}+\cdots+t_{k} \vec{V}_{k}=\overrightarrow{0} \\
\text { This coefficient } \neq 0
\end{gathered}
$$

So if $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent, then the equation

$$
t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}
$$

has a solution with at least one $t_{i} \neq 0$.

This can only happen when $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{k}\right\}$ is linearly dependent!
why?
Because if $t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}$ and some t_{i} is non-zero, then we can move $t_{i} \vec{v}_{i}$ over to get

$$
-t_{i} \vec{v}_{i}=t_{1} \vec{v}_{1}+\cdots+t_{i-1} \vec{v}_{i-1}+t_{i+1} \vec{v}_{i+1}+\cdots+t_{k} \vec{v}_{k} .
$$

By dividing both sides by t_{i}, we have

$$
\vec{V}_{i}=\left(\frac{-t_{1}}{t_{i}}\right) \vec{V}_{1}+\cdots+\left(\frac{-t_{i-1}}{t_{i}}\right) \vec{V}_{i-1}+\left(\frac{-t_{i+1}}{t_{i}}\right) \vec{V}_{i+1}+\cdots+\left(\frac{-t_{k}}{t_{i}}\right) \vec{V}_{k}
$$

$\Rightarrow \vec{v}_{i}$ can be written as a linear combination of the other vectors in $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$.
$\Rightarrow\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent.

This provides us with a more useful definition of linear dependence:

Definition: A set of vectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is
(i) linearly dependent if there are scalars $t_{1}, t_{2}, \ldots, t_{k}$ not all O such that

$$
t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}
$$

(ii) linearly independent if the only solution to the equation

$$
t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is $t_{1}=t_{2}=\cdots=t_{k}=0$ (called the trivial solution).

Ex: Is the set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right]\right\}$ linearly independent?
Solution: Suppose t_{1}, t_{2}, t_{3} are such that

$$
t_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t_{3}\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]=\overrightarrow{0}
$$

This gives us a system of equations

$$
\left\{\begin{align*}
t_{1}+2 t_{2}+3 t_{3} & =0 \tag{1}\\
t_{2}+2 t_{3} & =0 \\
-t_{3} & =0
\end{align*}\right.
$$

From (3) we get $t_{3}=0$.
From (2) we get $t_{2}+\underbrace{2 t_{3}}_{=0}=0 \quad \Rightarrow \quad t_{2}=0$.
From (1) we get $t_{1}+\underbrace{2 t_{2}}_{=0}+\underbrace{3 t_{3}}_{=0}=0 \Rightarrow t_{1}=0$

Thus, the only solution to the equation

$$
t_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t_{3}\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]=\overrightarrow{0}
$$

is $t_{1}=t_{2}=t_{3}=0$ (the trivial solution).

$$
\therefore\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]\right\} \quad \text { is linearly independent. }
$$

Note: This example shows that deciding whether or not a set of vectors is linearly independent boils down to solving a system of equations. This is the topic of chapter 2.

Exercise: Show that if $\left\{\vec{V}_{1}, \vec{V}_{2}, \ldots, \vec{V}_{k}\right\}$ contains $\overrightarrow{0}$, then this set is linearly dependent.

Bases: The real idea behind today's lesson:
the simplest spanning set for a subspace S is one that is linearly independent

Definition: If $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is a linearly independent set that Spans a subspace S of \mathbb{R}^{n}, then $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is called a basis for S^{\prime}.

Ex: Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right], \vec{V}_{3}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$, and $S=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$

Then $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a spanning set for S^{\prime}, but it is not
a basis for S. Why? Because

$$
\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]+\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]
$$

So $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is not linearly independent. By removing $\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$, we don't change the span:

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]\right\} .
$$

Since neither vector in $\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]\right\}$ is a multiple of the other, this set is linearly independent.
$\therefore\left\{\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]\right\}$ is a basis for S.

Definition: The standard basis for \mathbb{R}^{n} is

$$
\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}
$$

Where \vec{e}_{i} has a 1 in the $i^{\text {th }}$ entry and O elsewhere
Ex: The standard basis for \mathbb{R}^{2} is $\left\{\overrightarrow{e_{1}}, \overrightarrow{e_{2}}\right\}$, where

$$
\vec{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } \quad \vec{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Is $\left\{\vec{e}_{1}, \overrightarrow{e_{2}}\right\}$ really a basis for \mathbb{R}^{2} ?
(1) It spans \mathbb{R}^{2}, as any vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ can be written as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

(2) It's linearly independent. Indeed, if $t_{1} \vec{e}_{1}+t_{2} \vec{e}_{2}=0$, then

$$
t_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+t_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow t_{1}=t_{2}=0
$$

So YES! It is a basis.

Exercise: Write down and draw the standard basis $\left\{\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right\}$ in \mathbb{R}^{3}.
Show that $\left\{\vec{e}_{1}, \overrightarrow{e_{2}}, \overrightarrow{e_{3}}\right\}$ is linearly independent and that $\operatorname{Span}\left\{\vec{e}_{1}, \vec{e}_{2}, \overrightarrow{e_{3}}\right\}=\mathbb{R}^{3} \quad$ (i.e., show it really is a basis for \mathbb{R}^{3} !)

Proposition: If $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is a basis for
a subspace S of \mathbb{R}^{n}, then every $\tilde{x} \in S$ can be written as

$$
\stackrel{\rightharpoonup}{x}=t_{1} \stackrel{\rightharpoonup}{v}_{1}+t_{2} \stackrel{\rightharpoonup}{v}_{2}+\cdots+t_{k} \stackrel{\rightharpoonup}{v}_{k}
$$

in exactly one way.
Proof: We know it can be done in at least one way, Since $\operatorname{Span} B=S$.

But if $\vec{x}=t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}$ and $\vec{x}=s_{1} \vec{v}_{1}+\cdots+s_{k} \vec{v}_{k}$
then $\overrightarrow{0}=\vec{x}-\vec{x}=\underbrace{\left(t_{1}-s_{1}\right)}_{R} \vec{v}_{1}+\cdots+\underbrace{\left(t_{k}-s_{k}\right)} \vec{v}_{k}$.
$=0$ since Z is linearly independent!
Thus $t_{1}=s_{1}, t_{2}=s_{2}, \ldots, \quad t_{k}=s_{k}$
So there was really only one way to write \vec{x} !

Lines, Planes, and Hyperplanes

Linear independence gives us a vector equation for lines, planes and hyperplanes in \mathbb{R}^{n} !

Definition:
(i) If $\vec{p}, \vec{v} \in \mathbb{R}^{n}$ with $\vec{v} \neq \overrightarrow{0}$ then

$$
\vec{x}=\vec{p}+t \stackrel{\rightharpoonup}{v} \quad(t \in \mathbb{R})
$$

is a line in \mathbb{R}^{n} passing through \vec{p}.
(ii) If $\vec{p} \in \mathbb{R}^{n}$ and $\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \subseteq \mathbb{R}^{n}$ is linearly independent, then

$$
\vec{x}=\vec{p}+t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2} \quad\left(t_{1}, t_{2} \in \mathbb{R}\right)
$$

is a plane in \mathbb{R}^{n} passing through \vec{p}.
(iii) If $\vec{p} \in \mathbb{R}^{n}$ and $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{V}_{n-1}\right\} \subseteq \mathbb{R}^{n}$ is linearly independent, then

$$
\vec{X}=\vec{p}+t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{n-1} \vec{v}_{n-1} \quad\left(t_{1}, t_{2}, \cdots, t_{n-1} \in \mathbb{R}\right)
$$

is a hyperplane in \mathbb{R}^{n} passing through \vec{p}.

Exi Does $S=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 1\end{array}\right]\right\}$ describe a line, plane, or hyperplane in \mathbb{R}^{4} ?

Solution: Since

$$
\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]+2\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]
$$

these vectors form a linearly dependent set. So

$$
S=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]\right\} .
$$

This last set is linearly independent, as the vectors are not multiples of each other. Thus

$$
\begin{gathered}
S=\left\{t_{1}\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]+t_{2}\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right]: t_{1}, t_{2} \in \mathbb{R}\right\} \\
\\
\text { linearly independent }
\end{gathered}
$$

$\therefore S^{\prime}$ is a plane in \mathbb{R}^{4}.

