$$
\xi 1.6 \text { - Subspaces of } \mathbb{R}^{n} \quad(1.2 \mathrm{~m} \text { text })
$$

We've been studying the geometry of vectors in $\mathbb{R}^{n} \quad(n=1,2,3, \ldots)$
Everything wive done in \mathbb{R}^{n} works because
(i) We can add vectors in \mathbb{R}^{n} according to certain nice rules:

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$ we have
(1) $\vec{x}+\vec{y} \in \mathbb{R}^{n}$
(closed under addition)
(2) $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (addition is commutative)
(3) $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (addition is associative)
(4) There exists a vector $\overrightarrow{0} \in \mathbb{R}^{n}$ such that $\vec{z}+\overrightarrow{0}=\vec{z}$ for all $\vec{z} \in \mathbb{R}^{n} \quad$ (zero vector)
(5) For each $\vec{x} \in \mathbb{R}^{n}$ there exists a vector $-\vec{x} \in \mathbb{R}^{n}$ such that $\vec{x}+(-\vec{x})=\overrightarrow{0}$ (additive inverses)
(ii) We can Multiply vectors in \mathbb{R}^{n} by real scalars according to certain nice rules:

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$ we have
(6) $t \vec{x} \in \mathbb{R}^{n}$
(closed under scalar multiplication)
(7) $s(t \vec{x})=(s t) \vec{x} \quad$ (scalar multiplication is associative)
(8) $(s+t) \vec{x}=s \vec{x}+t \vec{x} \quad$ (a distributive law)
(9) $t(\vec{x}+\vec{y})=t \vec{x}+t \vec{y} \quad$ (another distributive law)
(10) $1 \vec{x}=\vec{x}$ (scalar multiplicative identity)

Since \mathbb{R}^{n} is closed under addition (1),
closed under scalar multiplication (6),
and these operations obey the other rules above, we call \mathbb{R}^{n} a vector space.

There are LOTS of other vector spaces out there...

In this course well only be interested in vector spaces S within \mathbb{R}^{n} (i.e, sets S contained in \mathbb{R}^{n} that are

- closed under addition, and
- closed under scalar multiplication.)

Definition A non-empty subset S of \mathbb{R}^{n} is called a subspace of \mathbb{R}^{n} if for all vectors $\vec{x}, \vec{y} \in S$ and $t \in \mathbb{R}$,
(1) $\vec{x}+\vec{y} \in S$ (S is closed under addition), and
(2) $t \vec{x} \in S$ (S is closed under scalar multiplication)

What about all those other rules listed above? Don't we have to check that these are satisfied in S?

Thankfully, no! Any subspace of \mathbb{R}^{n} will automatically inherits properties (2)-(5) and (7)-(10) from \mathbb{R}^{n}, So we don't need to check them!

Remarks: (i) In (2) of the definition of "subspace" above, we can set $t=0$ to see that every subspace must contain \vec{O}
This is useful for showing that certain subsets of \mathbb{R}^{n} are NOT subspaces.

For example, if $S=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]: x_{1}+x_{2}-3 x_{3}=5\right\}$, then S is NOT a subspace of \mathbb{R}^{3}.
why? $\overrightarrow{0} \notin S!$

In fact, if S^{\prime} is any line or plane in \mathbb{R}^{n} that doesrit pass through the origin, then S is NOT a subspace!
(ii) The smallest subspace of \mathbb{R}^{n} is $\{\overrightarrow{0}\}$. This is sometimes called the trivial subspace.
(iii) The largest subspace of \mathbb{R}^{n} is... \mathbb{R}^{n} !

Ex: Show that $S=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]: x_{1}+2 x_{2}+3 x_{3}=0\right\}$ is a subspace of \mathbb{R}^{3}.

Solution: There are 3 things to check.
(i) S is non-empty

Well check that $\overrightarrow{0} \in S$. If $x_{1}=0, x_{2}=0$, and $x_{3}=0$, then $x_{1}+2 x_{2}+3 x_{3}=0+2(0)+3(0)=0$. So $\overrightarrow{0} \in S$.
$\therefore S$ is non-empty.
(ii) S is closed under addition

Suppose that $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \quad \vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right] \in S$, so

$$
x_{1}+2 x_{2}+3 x_{3}=0 \quad \text { and } \quad y_{1}+2 y_{2}+3 y_{3}=0
$$

We need to check that $\vec{x}+\vec{y}=\left[\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2} \\ x_{3}+y_{3}\end{array}\right]$ belongs to S.
We have

$$
\begin{aligned}
\left(x_{1}+y_{1}\right)+2\left(x_{2}+y_{2}\right)+3\left(x_{3}+y_{3}\right) & =(\underbrace{x_{1}+2 x_{2}+3 x_{3}}_{=0})+(\underbrace{y_{1}+2 y_{2}+3 y_{3}}_{=0}) \\
& =0+0 \\
& =0
\end{aligned}
$$

$\therefore \vec{x}+\vec{y} \in S$, so S is closed under addition
(iii) S is closed under scalar multiplication.

Suppose that $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ belongs to S^{\prime}, so $x_{1}+2 x_{2}+3 x_{3}=0$.
For $t \in \mathbb{R}$, we must show that $t \vec{x}=\left[\begin{array}{l}t x_{1} \\ t x_{2} \\ t x_{3}\end{array}\right] \in S$.
We have

$$
\begin{aligned}
\left(t x_{1}\right)+2\left(t x_{2}\right)+3\left(t x_{3}\right) & =t x_{1}+t\left(2 x_{2}\right)+t\left(3 x_{3}\right) \\
& =t(\underbrace{\left.x_{1}+2 x_{2}+3 x_{3}\right)}_{=0} \\
& =t(0) \\
& =0
\end{aligned}
$$

$\therefore t \vec{x} \in S$, so S is closed under scalar multiplication.

By (i), (ii), (iii), S is a subspace of \mathbb{R}^{3}.

Exi Show that $I=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: 2 x_{1}=3 x_{2}\right\}$ is a subspace of \mathbb{R}^{2}.

Solution: We have 3 things to check.
(i) I is non-empty

Let's check that $\overrightarrow{0} \in I$. If $x_{1}=0$ and $x_{2}=0$, then $2 x_{1}=0$ and $3 x_{2}=0$, so $2 x_{1}=3 x_{2}$.
$\therefore \vec{O} \in I$, so T is non-empty.
(ii) I is closed under addition.

Suppose that $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$ belong to,
so $2 x_{1}=3 x_{2}$ and $2 y_{1}=3 y_{2}$.
We must show that $\vec{x}+\vec{y}=\left[\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2}\end{array}\right] \in I$ as well.
We have

$$
2\left(x_{1}+y_{1}\right)=\underbrace{2 x_{1}}_{=3 x_{2}}+\underbrace{2 y_{1}}_{=3 y_{2}}=3 x_{2}+3 y_{2}=3\left(x_{2}+y_{2}\right) .
$$

$\therefore \vec{x}+\vec{y} \in I$, so I is closed under addition.
(iii) I is closed under scalar multiplication.

Suppose that $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ belongs to I, so $2 x_{1}=3 x_{2}$.
For $t \in \mathbb{R}$, we must show that $t \vec{x}=\left[\begin{array}{l}t x_{1} \\ t x_{2}\end{array}\right] \in I$.
We have

$$
2\left(t x_{1}\right)=t(\underbrace{2 x_{1}}_{=3 x_{2}})=t\left(3 x_{2}\right)=3\left(t x_{2}\right) .
$$

$\therefore t \vec{x} \in I$, so I is closed under scalar multiplication.

By (i), (ii), and (iii), I is a subspace of \mathbb{R}^{2}

Ex: Show that $S=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: x_{1} x_{2}=0\right\}$ is not a subspace of \mathbb{R}^{2}.

Solution: The fastest way to do this would be to show that S doesn't contain $\overrightarrow{0}$. Unfortunately, $\overrightarrow{0} \in S \ldots$

Can we show that S is not closed under addition?
If $\vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, then $\vec{x}, \vec{y} \in S$, but

$$
\vec{x}+\vec{y}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \& S
$$

why? Because $(1)(1) \neq 0$.
So S is not closed under addition, hence S is NOT a subspace of \mathbb{R}^{2} !

Exercise: For each set below, decide whether or not it is a subspace of \mathbb{R}^{3}. Justify your answer.

$$
\left.\begin{array}{l}
S_{1}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]: 3 x_{2}-5 x_{3}=0\right\} \\
S_{2}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]: x_{1} \geqslant 0\right\} \\
S_{3}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]: x_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right\} \\
S_{4}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]: \quad x_{1}+4 x_{2}=1\right.
\end{array}\right\}
$$

Ex: If $B=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ is a set of vectors in \mathbb{R}^{n}, let S be the set of linear combinations of vectors from \mathcal{B} :

$$
S=\left\{t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k} \mid t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}\right\}
$$

Then S is a subspace of \mathbb{R}^{n}.

Let's see why!

- S is non-empty

By taking $t_{1}=t_{2}=\cdots=t_{k}=0$, we have that

$$
\vec{O}=O \vec{v}_{1}+O \vec{v}_{2}+\cdots+O \vec{v}_{k} \in S
$$

$\therefore S$ is non-empty.

- S is closed under addition

Let \vec{x} and \vec{y} belong to S.
By definition, there are $t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{R}$ and $s_{1}, s_{2}, \ldots, s_{k} \in \mathbb{R}$ such that $\vec{x}=t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}$

$$
\vec{y}=s_{1} \vec{v}_{1}+s_{2} \stackrel{\rightharpoonup}{v}_{2}+\cdots+s_{k} \vec{v}_{k}
$$

But then

$$
\begin{aligned}
\vec{x}+\vec{y} & =\left(t_{1} \vec{v}_{1}+t_{2} \vec{v}_{2}+\cdots+t_{k} \vec{v}_{k}\right)+\left(s_{1} \vec{v}_{1}+s_{2} \vec{v}_{2}+\cdots+s_{k} \vec{v}_{k}\right) \\
& =\left(t_{1}+s_{1}\right) \vec{v}_{1}+\left(t_{2}+s_{2}\right) \vec{v}_{2}+\cdots+\left(t_{k}+s_{k}\right) \vec{v}_{k}
\end{aligned}
$$

Since each $\left(t_{i}+\delta_{i}\right) \in \mathbb{R}$, we have that $\vec{x}+\vec{y} \in S$
$\therefore S$ is closed under addition

- S is closed under scalar multiplication

If $\vec{x} \in S$, then there are $S_{1}, S_{2}, \ldots, S_{k} \in \mathbb{R}$ such that

$$
\vec{x}=s_{1} \vec{v}_{1}+s_{2} \vec{v}_{2}+\cdots+s_{k} \vec{v}_{k}
$$

Then for any $t \in \mathbb{R}$, we have

$$
\begin{aligned}
t \vec{x} & =t\left(s_{1} \vec{v}_{1}+s_{2} \vec{v}_{2}+\cdots+s_{k} \overrightarrow{v_{k}}\right) \\
& =\left(t s_{1}\right) \vec{v}_{1}+\left(t s_{2}\right) \vec{v}_{2}+\cdots+\left(t s_{k}\right) \overrightarrow{v_{k}}
\end{aligned}
$$

Since each $t s_{i} \in \mathbb{R}$, we have $t \vec{x} \in S$.
$\therefore S$ is closed under scalar multiplication.

Thus, S is indeed a subspace of \mathbb{R}^{n} !

This type of subspace shows up A LOT!

Well study it more closely in $\S 1.7$.

