§ 1.6 - Subspaces of
$$\mathbb{R}^n$$
 (\$1.2 in fext)
Webe been studying the geometry of vectors in \mathbb{R}^n ($n=1,2,3,...$)
Everything we've done in \mathbb{R}^n works because
(i) We can add vectors in \mathbb{R}^n according to certain
nice rules:
For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^n$ (closed under addition)
(2) $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ (addition is commutative)
(3) $(\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + \vec{w})$ (addition is associative)
(4) There exists a vector $\vec{v} \in \mathbb{R}^n$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
(additive inverses)
(5) For each $\vec{x} \in \mathbb{R}^n$ there exists a vector $-\vec{x} \in \mathbb{R}^n$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
(additive inverses)
(5) No can Multiply vectors in \mathbb{R}^n by real scalars according
to certain nice, rules:
For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$ we have
(6) $t\vec{x} \in \mathbb{R}^n$ (closed under scalar multiplication)
(7) $s(t\vec{x}) = (st) \cdot \vec{x}$ (a distributive law)
(10) $1\vec{x} = \vec{x}$ (scalar multiplicative)
Since \mathbb{R}^n is closed under addition (1),
closed under scalar multiplication (6),
and these operations obey the other rules above,
we call \mathbb{R}^n a vector space.

There are <u>LOTS</u> of other vector spaces out there... In this course we'll only be interested in vector spaces $S \xrightarrow{within R^n}$ (i.e., sets S contained in Rⁿ that are · closed under addition, and · closed under scalar multiplication.) Definition A non-empty subset S of Rⁿ is called a subspace of Rⁿ if for all vectors $\overline{x}, \overline{y} \in S$ and $t \in R$, (1) $\overline{x} + \overline{y} \in S$ (S is closed under addition), and

(z) $t \vec{x} \in S$ (S is closed under scalar multiplication)

Thankfully, no! Any subspace of \mathbb{R}^n will automatically inherits properties (2)-(5) and (7)-(10) from \mathbb{R}^n , so we don't need to check them!

Remarks: (i) In (2) of the definition of "subspace"
above, we can set
$$t=0$$
 to see that
every subspace must contain \vec{O}
This is useful for showing that certain subsets of
 \mathbb{R}^n are NOT subspaces.
For example, if $S = \left\{ \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} : \mathbf{x}_1 + \mathbf{x}_2 - 3\mathbf{x}_3 = 5 \right\}$, then S
is NOT a subspace of \mathbb{R}^3 .
Why? $\vec{O} \notin S!$

In fact, if S is any line or plane in R^h that doesn't pass through the origin, then S is NOT a subspace!

(ii) The smallest subspace of
$$\mathbb{R}^n$$
 is $\{\vec{0}\}$.
This is sometimes called the trivial subspace.

Ex: Show that
$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} : x_1 + 2x_2 + 3x_3 = 0 \right\}$$
 is a subspace of \mathbb{R}^3 .

(i)
$$\underline{S}$$
 is non-empty
We'll check that $\overline{O} \in \underline{S}$. If $x_1 = 0$, $x_2 = 0$, and $x_3 = 0$,
then $x_1 + 2x_2 + 3x_3 = 0 + 2(0) + 3(0) = 0$. So $\overline{O} \in \underline{S}$.
 \therefore \underline{S} is non-empty.

(ii)
$$S$$
 is closed under addition
Suppose that $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $\vec{y} = \begin{bmatrix} y_1 \\ y_3 \end{bmatrix} \in S$, So
 $\vec{x}_1 + 2x_2 + 3x_3 = 0$ and $y_1 + 2y_2 + 3y_3 = 0$.
We need to check that $\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_3 \end{bmatrix}$ belongs to S .
We have
 $(x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3) = (x_1 + 2x_2 + 3x_3) + (y_1 + 2y_2 + 3y_3)$
 $= 0$
 $= 0 + 0$
 $= 0$

$$\therefore$$
 $\vec{X} + \vec{y} \in \vec{S}$, so \vec{S} is closed under addition

(iii)
$$S$$
 is closed under scalar multiplication.
Suppose that $\vec{X} = \begin{bmatrix} x_1 \\ z_2 \\ z_3 \end{bmatrix}$ belongs to S , so $X_1 + 2x_2 + 3x_3 = 0$.
For $E \in \mathbb{R}$, we must show that $E\vec{X} = \begin{bmatrix} tx_1 \\ tx_2 \\ tx_3 \end{bmatrix} \in S$.

$$(tx_1) + 2(tx_2) + 3(tx_3) = tx_1 + t(2x_2) + t(3x_3)$$

= $t(x_1 + 2x_2 + 3x_3)$
= $t(0)$
= 0

: EXES, so S is closed under scalar multiplication.

By (i), (ii), (iii), S is a subspace of
$$\mathbb{R}^3$$
.

Exi Show that
$$\Upsilon = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : 2x_1 = 3x_2 \right\}$$
 is a subspace of \mathbb{R}^2 .

(i)
$$\underline{T}$$
 is non-empty
Let's check that $\overline{O} \in T$. If $x_1 = 0$ and $x_2 = 0$, then
 $2x_1 = 0$ and $3x_2 = 0$, so $2x_1 = 3x_2$.

(ii)
$$T$$
 is closed under addition.
Suppose that $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ belong to ,
so $2x_1 = 3x_2$ and $2y_1 = 3y_2$.
We must show that $\vec{x} + \vec{y} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix} \in T$ as well.
We have
 $2(x_1 + y_1) = 2x_1 + 2y_1 = 3x_2 + 3y_2 = 3(x_2 + y_2)$.
 $\therefore \vec{x} + \vec{y} \in T$, so T is closed under addition.

(iii) T is closed under scalar Multiplication.
Suppose that
$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 belongs to T, So $2x_1 = 3x_2$.
For teR, we must show that $\pm \vec{x} = \begin{bmatrix} \pm x_1 \\ \pm x_2 \end{bmatrix} \in T$.
We have

$$2(tx_1) = t(Zx_1) = t(3x_2) = 3(tx_2).$$

Solution

Show that
$$S = \{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1 x_2 = 0 \}$$
 is not a subspace of \mathbb{R}^2 .

The fastest way to do this would be to show that S
doesn't contain
$$\vec{O}$$
. Unfortunately, $\vec{O} \in S$...
Can we show that S is not closed under addition?
If $\vec{X} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, then $\vec{X}, \vec{y} \in S$, but
 $\frac{\vec{X} + \vec{y} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \notin S$.
Why? Because $(1)(1) \notin O$.
So S is not closed under addition, hence S is Not
a subspace of \mathbb{R}^2 !

Exercise: For each set below, decide whether or not it is a subspace of R³. Justify your answer. $S_{1} = \begin{cases} \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{cases} : 3x_{2} - 5x_{3} = 0 \end{cases}$ $S_{z} = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} : x_{1} \ge 0 \right\}$ $S_{4} = \left\{ \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} : \mathcal{X}_{1} + \mathcal{Y}_{2} = 1 \right\}$ $S_5 = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}; \quad x_1 + 3x_2 = 0, \quad x_2 = x_3 \right\}$

Ex: If
$$\mathbb{B} = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$$
 is a set of vectors in \mathbb{R}^n , let S
be the set of linear combinations of vectors from \mathbb{B} :
 $S = \{t_1\vec{v}_1 + t_2\vec{v}_2 + ... + t_k\vec{v}_k \mid t_1, t_2, ..., t_k \in \mathbb{R}\}$
Then S is a subspace of \mathbb{R}^n .

•
$$\underline{S}$$
 is non-empty
By taking $t_1 = t_2 = \cdots = t_k = 0$, we have that
 $\overline{O} = 0 \overline{v_1} + 0 \overline{v_2} + \cdots + 0 \overline{v_k} \in S$.

• S is closed under addition
Let
$$\vec{x}$$
 and \vec{y} belong to S'.
By definition, there are $t_1, t_2, ..., t_k \in \mathbb{R}$ and $S_1, S_2, ..., S_k \in \mathbb{R}$
such that $\vec{x} = t_1 \vec{v_1} + t_2 \vec{v_2} + ... + t_k \vec{v_k}$
 $\vec{y} = S_1 \vec{v_1} + S_2 \vec{v_2} + ... + S_k \vec{v_k}$

But then

$$\vec{X} + \vec{y} = \left(\underbrace{t_1 \vec{v}_1}_{l} + \underbrace{t_2 \vec{v}_2}_{l} + \cdots + \underbrace{t_k \vec{v}_k}_{l} \right) + \left(\underbrace{s_1 \vec{v}_1}_{l} + \underbrace{s_2 \vec{v}_2}_{l} + \cdots + \underbrace{s_k \vec{v}_k}_{l} \right)$$
$$= \left(\underbrace{t_1 + s_1}_{l} \right) \vec{v}_1 + \left(\underbrace{t_2 + s_2}_{l} \right) \vec{v}_2 + \cdots + \left(\underbrace{t_k + s_k}_{l} \right) \vec{v}_k$$

Since each
$$(t_i + s_i) \in \mathbb{R}$$
, we have that $\vec{x} + \vec{y} \in S$
... S is closed under addition

• \underline{S} is closed under scalar multiplication If $\vec{x} \in S$, then there are $S_1, S_2, ..., S_K \in \mathbb{R}$ such that $\vec{x} = S_1 \vec{v_1} + S_2 \vec{v_2} + \dots + S_k \vec{v_k}$ Then for any $t \in \mathbb{R}$, we have $t \vec{x} = t \left(S_1 \vec{v_1} + S_2 \vec{v_2} + \dots + S_k \vec{v_k} \right)$ $= (t S_1) \vec{v_1} + (t S_2) \vec{v_2} + \dots + (t S_k) \vec{v_k}$

Since each $ts_i \in \mathbb{R}$, we have $t\overline{x} \in S$. \therefore S is closed under scalar multiplication.

Thus, S is indeed a subspace of Rn!

圓