$\xi 1.5$ - The Cross Product

We can write down the scalar equation of a plane in \mathbb{R}^{3} if we know a non-zero vector orthogonal to the plane (ie, a normal vector).

But how can such a vector be found??

In particular, if $\vec{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ are vectors in \mathbb{R}^{3}, how can we find a vector $\vec{W}=\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]$ that is orthogonal to both \vec{u} and \vec{v} ?

This vector \vec{w} would have to satisfy the equations

$$
\left\{\begin{array}{l}
\vec{u} \cdot \vec{w}=u_{1} w_{1}+u_{2} w_{2}+u_{3} w_{3}=0 \\
\vec{v} \cdot \vec{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}=0
\end{array}\right.
$$

Well learn how to solve equations like this in Chapter 2. For now, here's the solution:

$$
\vec{W}=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3}
\end{array}\right]=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

or any scalar multiple of this vector.
Definition: The cross product of $\vec{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$ and $\vec{V}=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$ is the vector

$$
\vec{u} \times \vec{v}=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

Ex: The cross product of $\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$ with $\left[\begin{array}{l}1 \\ 0 \\ 7\end{array}\right]$

$$
\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \times\left[\begin{array}{l}
1 \\
0 \\
7
\end{array}\right]=\left[\begin{array}{l}
(3)(7)-(4)(0) \\
(4)(1)-(2)(7) \\
(2)(0)-(3)(1)
\end{array}\right]=\left[\begin{array}{c}
21 \\
-10 \\
-3
\end{array}\right]
$$

How can we remember this messy formula?

Suppose $\vec{u} \times \vec{v}=\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]$.
Get wi by adding the product on the down arrow and subtracting the product on the up arrow.

So $w_{1}=u_{2} v_{3}-v_{2} u_{3}$

Do the same for W_{2}, w_{3} !

Theorem (Properties of x): For $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{3}$ and $t \in \mathbb{R}$,

1. $(\vec{x} \times \vec{y}) \perp \vec{x},(\vec{x} \times \vec{y}) \perp \vec{y} ;$
2. $\vec{x} \times \vec{y}=-(\vec{y} \times \vec{x})$;
3. $\vec{x} \times \vec{x}=\overrightarrow{0}$;
4. $\vec{x} \times(\vec{y}+\vec{z})=\vec{x} \times \vec{y}+\vec{x} \times \vec{z}$;
5. $(t \vec{x}) \times \vec{y}=\vec{x} \times(t \vec{y})=t(\vec{x} \times \vec{y})$.

Applications to Lines and Planes

1. The equation of a plane through two lines

If two lines in \mathbb{R}^{3} intersect at some point, then they must lie in a common plane.

What's the equation of this plane?

Idea: The plane's normal vector is orthogonal to the direction vector of each line!

Ex: The lines

$$
\vec{x}=\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right], \quad \vec{x}=\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right]+t\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right] \quad(t \in \mathbb{R})
$$

both pass through $(4,0,3)$, so they must lie in a common plane. Find the scalar equation of this plane.

Solution: The normal vector of this plane is orth
to both direction vectors $\left[\begin{array}{c}1 \\ -1 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$.
So we may take

$$
\vec{h}=\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right] \times\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
(-1)(0)-(5)(2) \\
(5)(2)-(1)(0) \\
(1)(2)-(-1)(2)
\end{array}\right]=\left[\begin{array}{c}
-10 \\
10 \\
4
\end{array}\right]
$$

This means that the equation is $-10 x_{1}+10 x_{2}+4 x_{3}=d$

Solve for d by plugging in any point on the plane. (i.e, any point on either line. $(4,0,3)$ will do!)

$$
-10(4)+10(0)+4(3)=d \quad \Rightarrow \quad d=-32
$$

Our plane is

$$
-10 x_{1}+10 x_{2}+4 x_{3}=-32
$$

2. The equation of a plane through three points

Just as two points determine a line, three points determine a plane.

How do we find this plane's equation?

Idea: The line segments $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ lie in the plane, and the normal vector is orthogonal to both!

Ex: Find the scalar equation of the plane containing

$$
P(2,-3,-1), \quad Q(5,3,5) \text {, and } R(0,0,2) \text {. }
$$

Solution: The plane contains the directed line segments

$$
\begin{aligned}
& \overrightarrow{P Q}=\vec{q}-\vec{p}=\left[\begin{array}{l}
5 \\
3 \\
5
\end{array}\right]-\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]=\left[\begin{array}{l}
3 \\
6 \\
6
\end{array}\right], \\
& \overrightarrow{P R}=\vec{r}-\vec{p}=\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]-\left[\begin{array}{c}
2 \\
-3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3 \\
3
\end{array}\right],
\end{aligned}
$$

So the plane's normal vector is orthogonal to $\overrightarrow{P Q}$ and $\overrightarrow{P R}$.

We can take $\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left[\begin{array}{l}3 \\ 6 \\ 6\end{array}\right] \times\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]=\left[\begin{array}{c}0 \\ -21 \\ 21\end{array}\right]$,
\Rightarrow the equation is $-21 x_{2}+21 x_{3}=d$

Plug in any point on the plane (egg., P, Q, R) to get $d=42$.

Hence, $\quad-21 x_{2}+21 x_{3}=42 \quad$ (or $-x_{2}+x_{3}=2$)
3. Line of intersection of two planes

Any two non-parallel planes in \mathbb{R}^{3} intersect in a line.

If we know the planes, how can we find the line?

Idea: The line is contained in both planes, so its direction vector is orthogonal to both normal vectors!

Ex: Find the vector equation of the line in \mathbb{R}^{3} obtained by intersecting the planes

$$
\begin{aligned}
& x_{1}-x_{2}+3 x_{3}=5, \\
& x_{1}+x_{2}+2 x_{3}=9 .
\end{aligned}
$$

Solution: The normal vectors of these planes are $\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$, respectively.

The direction vector of our line is orthogonal to both normals, So $\vec{d}=\left[\begin{array}{c}1 \\ -1 \\ 3\end{array}\right] \times\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{c}-5 \\ 1 \\ 2\end{array}\right]$

The equation of the line is

$$
\vec{x}=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
1 \\
2
\end{array}\right] \quad(t \in \mathbb{R})
$$

where $P\left(p_{1}, p_{2}, p_{3}\right)$ is any point on the line. $\left(\begin{array}{l}\left.\text { ie., } P \text { is any point on both planes } \begin{array}{l}x_{1}-x_{2}+3 x_{3}=5, \\ \\ x_{1}+x_{2}+2 x_{3}=9\end{array}\right)\end{array}\right.$

To get such a point, set $x_{3}=0$ and solve the system of equations to get x_{1} and x_{2}.

$$
\left\{\begin{array} { l l }
{ x _ { 1 } - x _ { 2 } + 3 x _ { 3 } = 5 } & { \text { with } x _ { 3 } = 0 } \tag{1}\\
{ x _ { 1 } + x _ { 2 } + 2 x _ { 3 } = 9 }
\end{array} \quad \longrightarrow \quad \left\{\begin{array}{l}
x_{1}-x_{2}=5 \\
x_{1}+x_{2}=9
\end{array}\right.\right.
$$

From (1), $x_{1}=x_{2}+5$
So from (2), $x_{1}+x_{2}=9 \Rightarrow\left(x_{2}+5\right)+x_{2}=9$

$$
\begin{aligned}
& \Rightarrow \quad 2 x_{2}=4 \\
& \Rightarrow \quad x_{2}=2
\end{aligned}
$$

Since $x_{1}=x_{2}+5$, we get $x_{1}=7$

A point on the line is $P(7,2,0)$, So the equation is

$$
\vec{x}=\left[\begin{array}{l}
7 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-5 \\
1 \\
2
\end{array}\right] \quad(t \in \mathbb{R})
$$

Areas and Volumes

The cross product can tell us about areas in \mathbb{R}^{2} and volumes in \mathbb{R}^{3}.

Fact: If \vec{u}, \vec{v} are vectors in \mathbb{R}^{3}, and θ is the angle between them, then

$$
\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta
$$

There's a proof of this fact in the book, but it's a bit messy. Instead, let's see how this formula can be used!

1. Area of Parallelogram

Two vectors \vec{u} and \vec{v} define a parallelogram

What is the area of this parallelogram?

For any parallelogram, Area $=$ (base) (height). The base of this parallelogram has length $\|\vec{u}\|$. What's the height??

Looking at the triangle in the lower left corner, we have

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{\text { height }}{\|\vec{v}\|}
$$

So, height $=\|\vec{v}\| \sin \theta$.

$$
\Rightarrow \text { Area }=(\text { base })(\text { height })=\|\vec{u}\|\|\vec{v}\| \sin \theta=\|\vec{u} \times \vec{v}\|
$$

Therefore,

$$
\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta=\text { Area of parallelogram }
$$ defined by \vec{u} and \vec{v}.

Ex: Find the area of the parallelogram on the right:

We can only do cross products in \mathbb{R}^{3}, so how can we find the area of a parallelogram in \mathbb{R}^{2} ??

We can think of this as a parallelogram in \mathbb{R}^{3} sitting in the $x_{1}-x_{2}$ plane. (ie., with $x_{3}=0$)

So this is the parallelogram defined by $\vec{u}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]$.

$$
\text { Area }=\|\vec{u} \times \vec{v}\|=\left\|\left[\begin{array}{l}
0 \\
0 \\
4
\end{array}\right]\right\|=4
$$

Exercise: Calculate the area of the parallelogram defined by $\vec{u}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{c}0 \\ 3 \\ -3\end{array}\right]$.
2. Volume of a parallelepiped.

Three vectors $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^{3} define a parallelepiped:

What is its volume?

The volume of a parallelepiped is

$$
V=\text { (Area of base). (height) }
$$

The area of the base is $\|\vec{u} \times \vec{v}\|$,

Area of base $=\|\vec{u} \times \stackrel{v}{v}\|$
but what is the height?

It's exactly $\|$ progun $\vec{w} \|$, the length of the projection of \vec{w} onto $\vec{n}=\vec{u} \times \vec{v}$!

Note that

$$
\left\|\operatorname{proj}_{\vec{n}} \vec{w}\right\|=\left\|\frac{\vec{\omega} \cdot \vec{n}}{\|\vec{n}\|^{2}} \vec{n}\right\|=\frac{|\vec{w} \cdot \vec{n}|}{\|\vec{n}\|^{2}}\|\vec{y}\|=\frac{|\vec{w} \cdot \vec{n}|}{\|\vec{n}\|},
$$

So Volume $=$ (Area of base) (height)

$$
=(\|\vec{u} \times \vec{v}\|)\left(\frac{|\vec{w} \cdot(\vec{u} \times \vec{v})|}{\|\vec{u} \times \vec{v}\|}\right)=\underline{|\vec{w} \cdot(\vec{u} \times \vec{v})|}
$$

The volume of the parallepiped defined by vectors $\vec{u}, \vec{v}, \vec{w}$ in \mathbb{R}^{3} is $|\vec{w} \cdot(\vec{u} \times \vec{v})|$.

Ex: What is the volume of the parallelepiped defined by $\vec{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]$, and $\vec{\omega}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$?

Solution: The volume is $|\vec{w} \cdot(\vec{u} \times \vec{v})|$.

We have that

$$
\vec{u} \times \vec{v}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \times\left[\begin{array}{l}
2 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right]
$$

So the volume is

$$
|\vec{w} \cdot(\vec{u} \times \vec{v})|=\left|\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right]\right|=|-3|=3
$$

Exercise: Determine the volume of the parallelepiped defined by $\vec{u}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \quad$ and $\quad \vec{\omega}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.

Notice something weird? Explain.
[Hint: Draw the parallelepiped!]

