\$ 1.5 - The Cross Product

We can write down the scalar equation of a plane
in
$$\mathbb{R}^3$$
 if we know a non-zero vector orthogonal
to the plane (i.e., a normal vector).

This vector \vec{W} would have to satisfy the equations $\begin{cases} \vec{u} \cdot \vec{w} = u_1 w_1 + u_2 w_2 + u_3 w_3 = 0 \\ \vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + v_3 w_3 = 0 \end{cases}$ We'll learn how to solve equations like this in Chapter 2. For now, here's the solution:

$$\vec{W} = \begin{bmatrix} W_1 \\ W_2 \\ W_3 \end{bmatrix} = \begin{bmatrix} U_2 V_3 - U_3 V_2 \\ U_3 V_1 - U_1 V_3 \\ U_1 V_2 - U_2 V_1 \end{bmatrix}$$

or any scalar multiple of this vector.

$$\begin{array}{c} \hline Definition: \\ \hline The \ cross \ product \ of \ \vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \ and \\ \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \ is \ the \ vector \\ \vec{u} \times \vec{v} = \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix} \\ \hline Ex: \ The \ cross \ product \ of \ \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \ with \ \begin{bmatrix} 1 \\ 0 \\ 7 \end{bmatrix} \ is \\ \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 7 \end{bmatrix} = \begin{bmatrix} (3\chi7) - (4)(0) \\ (4)(1) - (2)(7) \\ (2)(0) - (3)(1) \end{bmatrix} = \begin{bmatrix} 21 \\ -10 \\ -3 \end{bmatrix} \end{array}$$

Ex: The lines

$$\vec{X} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}, \quad \vec{X} = \begin{bmatrix} 4 \\ 0 \\ 3 \end{bmatrix} + t \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} \quad (teR)$$
both pass through (4,0,3), so they must lie in a common plane.
Find the scalar equation of this plane.

Solution: The normal vector of this plane is orthogonal
to both direction vectors
$$\begin{bmatrix} 1\\ -1\\ 5 \end{bmatrix}$$
 and $\begin{bmatrix} 2\\ 2\\ 0 \end{bmatrix}$.

So we may take

$$\vec{h} = \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix} \times \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} (-1)(0) - (5)(2) \\ (5)(2) - (1)(0) \\ (1)(2) - (-1)(2) \end{bmatrix} = \begin{bmatrix} -10 \\ 10 \\ 4 \end{bmatrix}$$

This means that the equation is $-10x_1 + 10x_2 + 4x_3 = d$

Solve for d by plugging in any point on the plane.
(i.e., any point on either line.
$$(4, 0, 3)$$
 will do!)
 $-10(4) + 10(0) + 4(3) = d \implies d = -32$

Our plane is $-10x_1 + 10x_2 + 4x_3 = -32$

 $-21x_2 + 21x_3 = 42$ (or $-x_2 + x_3 = 2$)

3. Line of intersection of two planes
Any two non-parallel planes
in
$$\mathbb{R}^3$$
 intersect in a line.
If we know the planes,
hav can we find the line?
Idea: The line is contained in both planes, so its
direction vector is orthogonal to both normal vectors!
Ex: Find the vector equation of the line in \mathbb{R}^3
obtained by intersecting the planes
 $\chi_1 - \chi_2 + 3\chi_3 = 5$,
 $\chi_1 + \chi_2 + 2\chi_3 = 9$.
Solution: The normal vectors of these planes are $\begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}$, respectively.

The direction vector of our line is orthogonal to both normals,
so
$$\vec{d} = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -5 \\ 1 \\ 2 \end{bmatrix}$$

The equation of the line is

$$\vec{X} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} + t \begin{bmatrix} -5 \\ 1 \\ 2 \end{bmatrix} \quad (teR)$$
Where $P(P_1P_2, P_3)$ is any point on the line.
(i.e., P is any point on both planes $z_1 - x_2 + 3x_3 = 5$,
 $z_1 + x_2 + 2x_3 = 9$.)
To get such a point, Set $x_3 = 0$ and solve the
system of equations to get x_1 and x_2 .

$$\begin{cases}
x_1 - x_2 + 3x_3 = 5 \\
x_1 + x_2 + 2x_3 = 9
\end{cases}$$
With $x_{1,0} = x_2 + 5$
So from (2), $x_1 + x_2 = 9 \Rightarrow (x_2 + 5) + x_2 = 9$

$$= 2 \varkappa_2 = 4$$
$$= 2 \varkappa_2 = 2$$

Since $\mathcal{R}_1 = \mathcal{R}_2 + 5$, we get $\mathcal{R}_1 = 7$

A point on the line is P(7,2,0), so the equation is $\overline{X} = \begin{bmatrix} 7 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} -5 \\ 1 \\ 2 \end{bmatrix}$ (LER)

The cross product can tell us about areas in \mathbb{R}^2 and volumes in \mathbb{R}^3 .

Fact: If
$$\vec{u}$$
, \vec{v} are vectors in \mathbb{R}^3 , and Θ is the angle between them, then
 $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \Theta$

For any parallelogram, Area = (base)(height). The base of this parallelogram has length $\|\vec{u}\|$. What's the height??

Looking at the triangle in the
lower left corner, we have
$$Sin \Theta = \frac{Opposite}{hypotenuse} = \frac{height}{\|\nabla\|}$$

So, height =
$$\|\vec{v}\| \sin \theta$$
.
 \implies Area = (base)(height) = $\|\vec{u}\| \|\vec{v}\| \sin \theta = \|\vec{u} \times \vec{v}\|$

Therefore,

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \Theta = Area of parallelogram defined by \vec{u} and \vec{v} .$$

We can think of this as
a parallelogram in
$$\mathbb{R}^3$$
 sitting
in the $\mathfrak{X}_1 - \mathfrak{X}_2$ plane.
(i.e., with $\mathfrak{X}_3 = 0$)
So this is the parallelogram defined by $\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ and $\vec{\nabla} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$.
Area = $\|\vec{u} \times \vec{\nabla}\| = \|\begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix}\| = 4$
Exercise: Calculate the area of the parallelogram defined
by $\vec{u} = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{\nabla} = \begin{bmatrix} 0 \\ 3 \\ -3 \end{bmatrix}$.

2. Volume of a parallelepiped.
Three vectors
$$\vec{u}, \vec{v}, \vec{w}$$
 in \mathbb{R}^3
define a parallelepiped:
What is its volume?

$$O = \frac{1}{2} \frac{1}{2}$$

The area of the base is
$$\|\vec{u} \times \vec{v}\|$$
,
but what is the height?

It's exactly
$$\| proj_{\vec{n}} \vec{w} \|$$
, the length of
the projection of \vec{w} onto $\vec{n} = \vec{u} \times \vec{v}$.

Note that

$$\| proj_{\vec{n}} \vec{w} \| = \| \vec{w} \cdot \vec{n} \| = \frac{|\vec{w} \cdot \vec{n}|}{\|\vec{n}\|^2} \| \vec{h} \| = \frac{|\vec{w} \cdot \vec{n}|}{\|\vec{n}\|^2},$$

So Volume = (Area of base)(height)
=
$$\left(\left\| \vec{u} \times \vec{v} \right\| \right) \left(\frac{\left\| \vec{w} \cdot (\vec{u} \times \vec{v}) \right\|}{\left\| \vec{u} \times \vec{v} \right\|} \right) = \frac{\left\| \vec{w} \cdot (\vec{u} \times \vec{v}) \right\|}{\left\| \vec{u} \times \vec{v} \right\|}$$

The volume of the parallepiped defined by vectors
$$\vec{u}, \vec{v}, \vec{w}$$
 in \mathbb{R}^3 is $|\vec{w} \cdot (\vec{u} \times \vec{v})|$.

Ex: What is the volume of the parallelepiped
defined by
$$\vec{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{v} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}, and \vec{w} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$
?
Solution: The volume is $\begin{bmatrix} \vec{w} \cdot (\vec{u} \times \vec{v}) \end{bmatrix}$.

We have that

$$\vec{\mathcal{U}} \times \vec{\mathcal{V}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix} \times \begin{bmatrix} 2\\0\\3 \end{bmatrix} = \begin{bmatrix} 0\\-3\\0 \end{bmatrix}$$

$$\left| \vec{u} \cdot (\vec{u} \times \vec{v}) \right| = \left| \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -3 \\ 0 \end{bmatrix} \right| = \left| -3 \right| = 3$$

Exercise: Determine the volume of the parallelepiped
defined by
$$\overline{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\overline{v} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, and $\overline{w} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.
Notice something weird? Explain.
 $\begin{bmatrix} \text{Hint}: \\ Draw \\ \text{the parallelepiped}! \end{bmatrix}$