$\xi 1.4$ - Projections
Suppose we have two vectors, \vec{x} and \vec{y} in $\mathbb{R}^{n}, \vec{x} \neq \overrightarrow{0}$.
We wish to write \vec{y} as a sum of two special vectors:

$$
\vec{y}=\vec{z}_{1}+\vec{z}_{2}
$$

where \vec{Z}_{1} is in the same direction as \vec{x}, and \vec{Z}_{2} is orthogonal to \vec{x}.

This is easy when $\vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$:

If $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, then

$$
\vec{y}=\left[\begin{array}{l}
y_{1}^{\prime,} \vec{z}_{1} \\
0
\end{array}\right]^{\frac{v_{1}}{2}}+\left[\begin{array}{l}
\overrightarrow{\vec{z}}_{2} \\
0 \\
y_{2}
\end{array}\right]
$$

Q: How do we find \vec{z}_{1}, \vec{z}_{2} when \vec{x} is more complicated?

We know that \vec{Z}_{1} is parallel to \vec{x} (ie., a multiple of \vec{x}), so

$$
\vec{z}_{1}=k \vec{x} \text { for some } k \in \mathbb{R} \text {. }
$$

This means that

$$
\vec{y}=\vec{z}_{1}+\vec{z}_{2}=k \vec{x}+\vec{z}_{2}
$$

Where \vec{Z}_{2} is orthogonal to \vec{x}.

To find k, take the dot product of \vec{x} and \vec{y} :

$$
\vec{x} \cdot \vec{y}=\vec{x} \cdot\left(k \vec{x}+\vec{z}_{2}\right)=k \underbrace{(\vec{x} \cdot \vec{x})}_{=\|\vec{x}\|^{2}}+\underbrace{\left(\vec{x} \cdot \vec{z}_{2}\right)}_{=0} \text { as } \vec{z}_{2}+\vec{x}!
$$

So... $\vec{x} \cdot \vec{y}=K\|\vec{x}\|^{2} \Rightarrow K=\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^{2}}$
We've just shown that $\quad \vec{z}_{1}=\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^{2}}\right) \vec{x}$!

Since $\vec{y}=\vec{z}_{1}+\vec{z}_{2}, \quad \vec{z}_{2}=\vec{y}-\vec{z}_{1}$

Definition: If \vec{x} and \vec{y} are in \mathbb{R}^{n} with $\vec{x} \neq \overrightarrow{0}$, then the projection of \vec{y} onto \vec{x} is $\operatorname{proj}_{\vec{x}} \vec{y}=\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^{2}}\right) \vec{x}$ and the perpendicular part is $\operatorname{perp}_{\vec{x}} \vec{y}=\vec{y}-\operatorname{proj}_{\vec{x}} \vec{y}$

From this definition it's clear that
(i) $\vec{y}=\operatorname{Proj} \vec{x} \vec{y}+\operatorname{Perp} \vec{x} \vec{y}$, and
(ii) $\operatorname{Proj}_{\vec{x}} \vec{y}$ is a multiple of \vec{x}.

In Q2 of Assignment 2, you verify
(iii) $\operatorname{Perp} \vec{x} \vec{y}=\vec{y}-\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^{2}}\right) \vec{x}$ is orthogonal to \vec{x}.

Ex: What is the projection of $\vec{y}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ onto $\vec{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$? What is the perpendicular part?

Solution: We have that $\operatorname{proj}_{\vec{x}} \vec{y}=\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^{2}}\right) \vec{x}$.
We get $\|\vec{x}\|^{2}=\left(\sqrt{2^{2}+1^{2}}\right)^{2}=5$ and $\vec{x} \cdot \vec{y}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}3 \\ 4\end{array}\right]=10$
So $\operatorname{proj}_{\vec{x}} \vec{y}=\left(\frac{10}{5}\right) \vec{x}=2 \vec{x}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$
and $\operatorname{perp}_{\vec{x}} \vec{y}=\vec{y}-\operatorname{proj}_{\vec{x}} \vec{y}=\left[\begin{array}{l}3 \\ 4\end{array}\right]-\left[\begin{array}{l}4 \\ 2\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$

Ex: If $\vec{x}=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$ and $\vec{y}=\left[\begin{array}{c}2 \\ -10 \\ 0\end{array}\right]$, find $\operatorname{proj}_{\vec{x}} \vec{y}, \operatorname{perp}_{\vec{x}} \vec{y}$, and $\operatorname{proj}_{y} \vec{x}$.

Solution: Note that $\|\vec{x}\|^{2}=10$ and $\vec{x} \cdot \vec{y}=-10$
So $\operatorname{proj}_{\vec{x}} \vec{y}=\left(\frac{\vec{x} \cdot \vec{y}}{\|x\|^{2}}\right) \vec{x}=\left(\frac{-10}{10}\right) \vec{x}=-\vec{x}=\left[\begin{array}{c}0 \\ -1 \\ -3\end{array}\right]$

$$
\operatorname{perp}_{\vec{x}} \vec{y}=\vec{y}-\operatorname{proj}_{\vec{x}} \vec{y}=\left[\begin{array}{c}
2 \\
-10 \\
0
\end{array}\right]-\left[\begin{array}{c}
0 \\
-1 \\
-3
\end{array}\right]=\left[\begin{array}{c}
2 \\
-9 \\
3
\end{array}\right]
$$

For prog $\vec{y} \vec{x}$, note that $\|\vec{y}\|^{2}=104$ and $\vec{y} \cdot \vec{x}=-10$.

$$
\text { So } \operatorname{proj}_{\vec{y}} \vec{x}=\binom{\vec{y} \cdot \vec{x}}{\|\vec{y}\|^{2}} \vec{y}=\left(\frac{-10}{104}\right) \vec{y}=\left[\begin{array}{c}
-20 / 104 \\
100 / 104 \\
0
\end{array}\right]
$$

Remark: The above example shows that, in general,

$$
\operatorname{proj}_{\vec{x}} \vec{y} \neq \operatorname{proj}_{\vec{y}} \vec{x} .
$$

That's not too surprising; $\operatorname{proj}_{\vec{x}} \vec{y}$ is a multiple of \vec{x}, while $\operatorname{proj}_{\vec{y}} \vec{x}$ is a multiple of \vec{y} !

Theorem (Properties of Proj/Perp)
Let $\vec{x}, \vec{y}, \vec{z}$ be vectors in \mathbb{R}^{n}, and let $t \in \mathbb{R}$

1. $\operatorname{Proj}_{\vec{x}}(\vec{y}+\vec{z})=\operatorname{Proj}_{\vec{x}} \vec{y}+\operatorname{Proj}_{\vec{x}} \vec{z}$
2. $\operatorname{Proj}_{\vec{x}}(t \vec{y})=t \operatorname{Proj}_{\vec{x}} \vec{y}$
3. $\operatorname{Proj} \vec{x}\left(\operatorname{Proj}_{\vec{x}} \vec{y}\right)=\operatorname{Proj}_{\vec{x}}(\vec{y})$

These properties are also true for $\operatorname{Perp} \vec{x}$.

Properties 1. and 2. Say that proj\vec{x} and perp \vec{x} are linear functions from \mathbb{R}^{n} into \mathbb{R}^{n} (something well return to in (hapten 3).

Proof of 1.:

$$
\begin{aligned}
\operatorname{Proj}_{\vec{x}}(\vec{y}+\vec{z}) & =\left(\frac{\vec{x} \cdot(\vec{y}+\vec{z})}{\|\vec{x}\|^{2}}\right) \vec{x} \\
& =\left(\frac{\vec{x} \cdot \vec{y}+\vec{x} \cdot \vec{z}}{\|\vec{x}\|^{2}}\right) \vec{x} \\
& =\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^{2}}+\frac{\vec{x} \cdot \vec{z}}{\|\vec{x}\|^{2}}\right) \vec{x} \\
& =\left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^{2}}\right) \vec{x}+\left(\frac{\vec{x} \cdot \vec{z}}{\|\vec{x}\|^{2}}\right) \vec{x}=\operatorname{Proj}_{\vec{x}} \vec{y}+\operatorname{Proj}_{\vec{x}} \vec{z} .
\end{aligned}
$$

Exercise: Try a similar approach for 2.
Can you explain intuitively why 3. is true?

Application: Minimum Distance

There are lots of reasons to care about projections.
One major application: projections can be used to find the line of best fit for a set of data points.

This is the line whose total distance to a set of points is as small as possible.t

A complete treatment of this topic: MATH 235.

Instead, well look at two different applications of projections to minimum distance.
'Want to know more about how to find this line? Talk to me after Chapter 3!

1. Distance from Point to Line.

Q: What's the distance (i.e., shortest distance) from a point Q to a line $\vec{x}=\vec{p}+t \vec{d} \quad(t \in \mathbb{R})$?

It's the length of the dotted line that meets our line at a right angle.

In the language of projections, this is exactly $\left\|\operatorname{Perp}_{\vec{d}}(\overrightarrow{P Q})\right\|$

The point on the line closest to Q is $\vec{P}+\operatorname{Proj}_{\vec{d}}(\overrightarrow{P Q})$

Ex: Find the distance from $Q(0,2)$ to the line $\vec{x}=\left[\begin{array}{l}4 \\ 2\end{array}\right]+t\left[\begin{array}{l}1 \\ 1\end{array}\right], t \in \mathbb{R}$. What is the closest point?

Solution: We have that $\vec{p}=\left[\begin{array}{l}4 \\ 2\end{array}\right]$ and $\vec{d}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
From the above, the distance $=\left\|\operatorname{perp}_{\vec{d}}(\overrightarrow{P Q})\right\|$ and the closest point is $\vec{P}+\operatorname{Proj}_{\vec{d}}(\overrightarrow{P Q})$.

So.. let's find $\operatorname{Proj}_{d}(\overrightarrow{P Q})$ and $\operatorname{Perp}_{\underset{d}{ }}(\overrightarrow{P Q})$!

Note: $\overrightarrow{P Q}=\vec{q}-\vec{p}=\left[\begin{array}{l}0 \\ 2\end{array}\right]-\left[\begin{array}{l}4 \\ 2\end{array}\right]=\left[\begin{array}{c}-4 \\ 0\end{array}\right]$,

$$
\begin{aligned}
& \|\vec{J}\|^{2}=2 \\
& \vec{d} \cdot \overrightarrow{P Q}=-4 .
\end{aligned}
$$

So $\operatorname{Proj} \vec{d} \overrightarrow{P Q}=\left(\frac{\vec{d} \cdot \overrightarrow{P Q}}{\|\vec{d}\|^{2}}\right) \vec{d}=\left(\frac{-4}{2}\right) \vec{d}=\left[\begin{array}{l}-2 \\ -2\end{array}\right]$,

$$
\operatorname{Perpa}_{ \pm} \overrightarrow{P Q}=\overrightarrow{P Q}-\operatorname{Proj}_{\vec{d}} \overrightarrow{P Q}=\left[\begin{array}{c}
-4 \\
0
\end{array}\right]-\left[\begin{array}{c}
-2 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
2
\end{array}\right]
$$

The distance is $\left\|\operatorname{Perpa}_{\mathfrak{d}}(\overrightarrow{P Q})\right\|=\left\|\left[\begin{array}{c}-2 \\ 2\end{array}\right]\right\|=\sqrt{8}$
The closest point is $\vec{P}+P_{\text {oj }}(\overrightarrow{P Q})=\left[\begin{array}{l}4 \\ 2\end{array}\right]+\left[\begin{array}{l}-2 \\ -2\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right]$

Exercise: Find the distance from $Q(1,0,1)$ to the line $\vec{x}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right]+t\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], t \in \mathbb{R}$. What is the closest point?
2. Distance from Point to Plane

Q: What's the distance from a point Q to a plane in \mathbb{R}^{3} with normal vector \vec{n} ?

Suppose P is any point on the plane.

The distance is the length of the dotted line segment that is orthogonal to the plane.

In terms of projections, this is $\|$ Prof $\vec{n}(\overrightarrow{P Q}) \|$

The point on the plane closest to Q is $\vec{q}-P_{r o j} \overrightarrow{P Q}$.

(This is the same as $\vec{p}+\operatorname{Perp}_{\vec{d}} \overrightarrow{P Q}$)

Ex: What is the distance from $Q(-1,1,2)$ to the plane $x_{1}+2 x_{2}+2 x_{3}=-4$? Find the point on the plane that is closest to Q

Solution: We can get a point P on the plane by setting $x_{2}=x_{3}=0$ and solving for x_{1}

$$
x_{1}+2 x_{2}+2 x_{3}=-4 \quad \underset{x_{2}=x_{3}=0}{\sim} \quad x_{1}=-4
$$

So $P=(-4,0,0)$ is a point on the plane, and $\vec{n}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$.
From above, we know that the distance is $\|P r o j \vec{n} \overrightarrow{P Q}\|$ and the closest point is $\vec{q}-\operatorname{Proj}_{\vec{n}} \overrightarrow{P Q}$.

We have $\overrightarrow{P Q}=\vec{q}-\vec{p}=\left[\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right]-\left[\begin{array}{c}-4 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$,

$$
\begin{aligned}
& \|\vec{n}\|^{2}=9 \\
& \vec{n} \cdot \overrightarrow{P Q}=9
\end{aligned}
$$

So $P_{\operatorname{roj}}^{n} \overrightarrow{P Q}=\left(\frac{\vec{n} \cdot \overrightarrow{P Q}}{\|\vec{n}\|^{2}}\right) \vec{n}=\left(\frac{Q}{q}\right) \vec{n}=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$.

The distance is $\|$ Proj, $\overrightarrow{P Q} \|=\sqrt{9}=3$

The closest point is

$$
\vec{q}-\operatorname{Proj}_{\vec{n}} \overrightarrow{P Q}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right]
$$

Exercise: What is the distance from $Q(1,1,1)$ to the plane

$$
2 x_{1}-x_{2}+x_{3}=2 ?
$$

Notice anything odd?
Which point on this plane is closest to Q ?

