§ 1.4 - Projections
Suppose we have two vectors,
$$\vec{x}$$
 and \vec{y} in \mathbb{R}^n , $\vec{x} \neq \vec{o}$.
We wish to write \vec{y} as a sum of two special vectors:
 $\vec{y} = \vec{z_1} + \vec{z_2}$

where
$$\overline{Z}_{1}$$
 is in the same direction as \overline{X}_{2} ,
and \overline{Z}_{2} is orthogonal to \overline{X}_{2} .

This is easy when
$$\vec{X} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
:

If $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, then $\vec{y} = \begin{bmatrix} z_1 \\ y_1 \\ 0 \end{bmatrix} + \begin{bmatrix} z_2 \\ 0 \\ y_2 \end{bmatrix}$ (parallel to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$) (perpendicular to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$)

We know that \vec{Z}_1 is parallel to \vec{x} (i.e., a multiple of \vec{x}), so $\vec{Z}_1 = K\vec{x}$ for some KER.

This means that $\frac{\vec{y} = \vec{z}_1 + \vec{z}_2 = K\vec{x} + \vec{z}_2}{\vec{y} = \vec{z}_1 + \vec{z}_2 = K\vec{x} + \vec{z}_2}$ Where \vec{z}_2 is orthogonal to \vec{x} . To find K, take the dot product of \vec{x} and \vec{y} : $\vec{x} \cdot \vec{y} = \vec{x} \cdot (K\vec{x} + \vec{z}_2) = K(\vec{x} \cdot \vec{x}) + (\vec{x} \cdot \vec{z}_2) = 0$ as $\vec{z}_2 \perp \vec{x}$!

So...
$$\vec{x} \cdot \vec{y} = K \|\vec{x}\|^2 \implies K = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^2}$$

We've just shown that $\vec{z}_1 = (\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^2})\vec{x}$.
Since $\vec{y} = \vec{z}_1 + \vec{z}_2$, $\vec{z}_2 = \vec{y} - \vec{z}_1$

Definition: If
$$\vec{x}$$
 and \vec{y} are in \mathbb{R}^n with $\vec{x} \neq \vec{0}$, then
the projection of \vec{y} onto \vec{x} is $\Pr[\vec{y}]_{\vec{x}} \vec{y} = \left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\|^2}\right) \vec{x}$
and the perpendicular part is $\Pr[\vec{y}]_{\vec{x}} \vec{y} = \vec{y} - \Pr[\vec{y}]_{\vec{x}} \vec{y}$.

From this definition it's clear that (i) $\vec{y} = \operatorname{Proj}_{\vec{x}} \vec{y} + \operatorname{Perp}_{\vec{x}} \vec{y}$, and (ii) $\operatorname{Proj}_{\vec{x}} \vec{y}$ is a <u>multiple</u> of \vec{x} .

In Q2 of Assignment 2, you verify
(iii)
$$\underline{Perp_{\vec{x}}}\vec{y} = \vec{y} - \left(\frac{\vec{x}\cdot\vec{y}}{\|\vec{x}\|^2}\right)\vec{x}$$
 is orthogonal to \vec{x} .

Exi What is the projection of
$$\overline{y} : \begin{bmatrix} x \\ y \end{bmatrix}$$
 onto $\overline{x} : \begin{bmatrix} z \\ z \end{bmatrix}$?
What is the perpendicular part?
Solution: We have that $\operatorname{Proj}_{\overline{x}} \overline{y} := \left(\frac{\overline{x} \cdot \overline{y}}{|\overline{x}|^{\frac{1}{2}}} \right) \overline{x}$.
We get $\|\overline{x}\|^{\frac{n}{2}} = \left(\sqrt{z^{\frac{n}{2}} + 1^{n}} \right)^{\frac{n}{2}} = 5$ and $\overline{x} \cdot \overline{y} : \begin{bmatrix} z \\ 1 \end{pmatrix} : \begin{bmatrix} x \\ y \end{bmatrix} = 10$
So $\operatorname{Proj}_{\overline{x}} \overline{y} := \left(\frac{10}{5} \right) \overline{x} = 2 \overline{x} := \begin{bmatrix} y \\ z \end{bmatrix}$
and $\operatorname{Perp}_{\overline{x}} \overline{y} := \overline{y} - \operatorname{Proj}_{\overline{x}} \overline{y} = \begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} y \\ z \end{bmatrix} := \begin{bmatrix} -t \\ z \end{bmatrix}$
 \overline{x}_{2}
 $\overline{x}_{1} = \frac{1}{2}$
 $\overline{x}_{2} = \frac{1}{2} = \frac{1}{2}$
 $\overline{x}_{1} = \frac{1}{2} = \frac{1}{2}$
 $\overline{x}_{2} = \frac{1}{2} = \frac{1}{2}$
 $\overline{x}_{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
 $\overline{x}_{2} = \frac{1}{2} = \frac{1}$

Solution: Note that
$$\|\vec{x}\|^2 = 10$$
 and $\vec{x} \cdot \vec{y} = -i0$
So $\operatorname{Proj}_{\vec{x}} \vec{y} = \left(\frac{\vec{x} \cdot \vec{y}}{\|\mathbf{x}\|^2}\right) \vec{x} = \left(\frac{-10}{10}\right) \vec{x} = -\vec{x} = \begin{bmatrix} 0\\ -1\\ -3 \end{bmatrix}$
 $\operatorname{Perp}_{\vec{x}} \vec{y} = \vec{y} - \operatorname{Proj}_{\vec{x}} \vec{y} = \begin{bmatrix} 2\\ -10\\ 0 \end{bmatrix} - \begin{bmatrix} 0\\ -1\\ -3 \end{bmatrix} = \begin{bmatrix} 2\\ -9\\ -3 \end{bmatrix}$
For $\operatorname{Proj}_{\vec{y}} \vec{x}$, note that $\|\vec{y}\|^2 = 104$ and $\vec{y} \cdot \vec{x} = -10$.
So $\operatorname{Proj}_{\vec{y}} \vec{x} = \left(\frac{\vec{y} \cdot \vec{x}}{\|\vec{y}\|^2}\right) \vec{y} = \left(\frac{-10}{104}\right) \vec{y} = \begin{bmatrix} -20/104\\ 100/104\\ 0 \end{bmatrix}$
Remark: The above example shows that, in general,
 $\operatorname{Proj}_{\vec{x}} \vec{y} \neq \operatorname{Proj}_{\vec{y}} \vec{x}$.
That's not too surprising; $\operatorname{Proj}_{\vec{y}} \vec{y}$ is a multiple of \vec{x} ,

Theorem (Properties of Proj/Perp)
Let
$$\vec{x}, \vec{y}, \vec{z}$$
 be vectors in \mathbb{R}^n , and let $t \in \mathbb{R}$
1. $\operatorname{Proj}_{\vec{x}}(\vec{y} + \vec{z}) = \operatorname{Proj}_{\vec{x}}\vec{y} + \operatorname{Proj}_{\vec{x}}\vec{z}$.

2.
$$\operatorname{Proj}_{\overrightarrow{x}}(\overrightarrow{ty}) = \operatorname{t}_{\operatorname{Proj}_{\overrightarrow{x}}} \overrightarrow{y}$$

3. $\operatorname{Proj}_{\overrightarrow{x}}(\operatorname{Proj}_{\overrightarrow{x}} \overrightarrow{y}) = \operatorname{Proj}_{\overrightarrow{x}}(\overrightarrow{y})$
These properties are also true for $\operatorname{Perp}_{\overrightarrow{x}}$.

Properties 1. and 2. Say that
$$\operatorname{proj}_X$$
 and perp_X are linear functions from \mathbb{R}^n into \mathbb{R}^n (something we'll return to in Chapter 3).

$$\Pr_{\vec{j},\vec{k}}(\vec{y}+\vec{z}) = \left(\frac{\vec{x}\cdot(\vec{y}+\vec{z})}{\|\vec{x}\|^2}\right)\vec{x}$$

$$= \left(\frac{\vec{x}\cdot\vec{y}+\vec{x}\cdot\vec{z}}{\|\vec{x}\|^2}\right)\vec{x}$$

$$= \left(\frac{\vec{x}\cdot\vec{y}}{\|\vec{x}\|^2} + \frac{\vec{x}\cdot\vec{z}}{\|\vec{x}\|^2}\right)\vec{x}$$

$$= \left(\frac{\vec{x}\cdot\vec{y}}{\|\vec{x}\|^2}\right)\vec{x} + \left(\frac{\vec{x}\cdot\vec{z}}{\|\vec{x}\|^2}\right)\vec{x} = \Pr_{\vec{j},\vec{k}}\vec{y} + \Pr_{\vec{j},\vec{k}}\vec{z}$$

+ Want to Know more about how to find this line? Talk to me after Chapter 3!

1. Distance from Point to Line.

Q: What's the distance (i.e., Shortest distance) from a point Q to a line $\vec{X} = \vec{p} + t\vec{J}$ (ter)?

X: Find the distance from
$$Q(0, 2)$$
 to the line
 $\vec{X} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $t \in \mathbb{R}$. What is the closest point?

Solution: We have that
$$\vec{p} = \begin{bmatrix} 4\\ 2 \end{bmatrix}$$
 and $\vec{d} = \begin{bmatrix} 1\\ 1 \end{bmatrix}$.
From the above, the distance = $\|perp_{3}(\vec{pa})\|$
and the closest point is $\vec{p} + \operatorname{Proj}_{3}(\vec{pa})$.
So. let's find $\operatorname{Proj}_{3}(\vec{pa})$ and $\operatorname{Perp}_{3}(\vec{pa})$!
Note: $\vec{pa} = \vec{q} - \vec{p} = \begin{bmatrix} 0\\ 2 \end{bmatrix} - \begin{bmatrix} 4\\ 2 \end{bmatrix} = \begin{bmatrix} -4\\ 0 \end{bmatrix}$,
 $\|\vec{d}\|^{2} = 2$,
 $\vec{d} \cdot \vec{pa} = -4$.
So $\operatorname{Proj}_{3} \vec{pa} = \left(\frac{\vec{d} \cdot \vec{pa}}{|\vec{d}|^{2}}\right)\vec{d} = \left(\frac{-4}{2}\right)\vec{d} = \begin{bmatrix} -2\\ -2 \end{bmatrix}$,
 $\operatorname{Perp}_{3} \vec{pa} = \vec{pa} - \operatorname{Proj}_{3} \vec{pa} = \begin{bmatrix} -4\\ 0 \end{bmatrix} - \begin{bmatrix} -2\\ -2 \end{bmatrix} = \begin{bmatrix} -2\\ 2 \end{bmatrix}$
The distance is $|\operatorname{Perp}_{3}(\vec{pa})| = ||\begin{bmatrix} -2\\ 2 \end{bmatrix}| = \sqrt{8}$.
The closest point is $\vec{p} + \operatorname{Proj}_{3}(\vec{pa}) = \begin{bmatrix} 4\\ 4\\ 2\end{bmatrix} + \begin{bmatrix} -2\\ -2 \end{bmatrix} = \begin{bmatrix} 2\\ 0\\ 0\end{bmatrix}$.

Exercise: Find the distance from
$$Q(1,0,1)$$
 to the line
 $\vec{x} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, te R. What is the closest point?

Q: What's the distance from a point Q to a plane in \mathbb{R}^3 with normal vector \vec{n} ?

Suppose P is any point on the plane.

The distance is the length of the dotted line segment that is orthogonal to the plane.

The point on the plane closest
to Q is
$$\vec{q} - Proj_{\vec{n}} \vec{PQ}$$
.

(This is the same as $\vec{p} + Perp_{\vec{d}} \vec{PQ}$)

Ex: What is the distance from
$$Q(-1,1,2)$$
 to the plane
 $x_1 + 2x_2 + 2x_3 = -4$? Find the point on the plane that
is closest to Q.

Solution: We can get a point P on the plane
by setting
$$\Re_2 = \Re_3 = 0$$
 and solving for \Re_1
 $\Re_1 + 2\Re_2 + 2\aleph_3 = -4$ $\underset{\aleph_2 = \aleph_3 = 0}{\longrightarrow}$ $\Re_1 = -4$
So $P = (-4, 0, 0)$ is a point on the plane, and $\vec{n} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$.

From above, we know that the distance is $\| \operatorname{Proj}_{\vec{n}} \overrightarrow{\operatorname{PQ}} \|$ and the closest point is $\overrightarrow{Q} - \operatorname{Proj}_{\vec{n}} \overrightarrow{\operatorname{PQ}}$.

We have
$$\overrightarrow{PQ} = \overrightarrow{2} - \overrightarrow{P} = \begin{bmatrix} -i \\ i \\ z \end{bmatrix} - \begin{bmatrix} -4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ i \\ 2 \end{bmatrix},$$

 $\|\overrightarrow{n}\|^2 = 9,$
 $\overrightarrow{n} \cdot \overrightarrow{PQ} = 9.$

So
$$\operatorname{Proj}_{\overline{n}} \overline{PQ} = \left(\frac{\overline{n} \cdot \overline{PQ}}{\|\overline{n}\|^2}\right)\overline{n} = \left(\frac{9}{9}\right)\overline{n} = \begin{bmatrix}1\\2\\2\end{bmatrix}.$$

The distance is $\|\operatorname{Proj}_{\overline{n}} \overline{PQ}\| = \sqrt{9} = 3$

The closest point is

$$\vec{q} - Pro\vec{j}_{\vec{h}} \vec{P}\vec{Q} = \begin{bmatrix} -1\\1\\2 \end{bmatrix} - \begin{bmatrix} 1\\2\\2 \end{bmatrix} = \begin{bmatrix} -2\\-1\\0 \end{bmatrix}$$

Exercise: What is the distance from Q(1,1,1) to the plane $2x_1 - x_2 + x_3 = 2$? Notice anything odd? Which point on this plane is closest to Q?