\$ 1.3 - Planes & Hyperplanes
Let
$$\vec{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
 be a non-zero vector in \mathbb{R}^3 .
Consider all vectors \vec{X} that are orthogonal to \vec{n} .
These vectors form a
plane passing through

The scalar equation of a plane through the origin that
is orthogonal to
$$\vec{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
 is $\vec{n} \cdot \vec{X} = 0$, or
 $N_1 \cdot \varkappa_1 + N_2 \cdot \varkappa_2 + N_3 \cdot \varkappa_3 = 0$.

A non-zero vector that is orthogonal to the plane (e.g., \vec{n}) is called a normal vector of the plane.

EX: Find the scalar equation of a plane through the origin
in
$$\mathbb{R}^3$$
 that has $\overline{n} = \begin{bmatrix} 2\\3\\-1 \end{bmatrix}$ as a normal vector.

Solution: The plane contains all vectors
$$\vec{X} = \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}$$
 orthogonal
to \vec{n} (i.e., $\vec{n} \cdot \vec{X} = 0$)
Thus, the equation is $2\chi_1 + 3\chi_2 - \chi_3 = 0$.

Suppose
$$\vec{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$$
 is a normal vector.

If $X(x_1, x_2, x_3)$ is on this plane, then $\overrightarrow{PX} = \overrightarrow{X} - \overrightarrow{p}$ is a line segment in the plane.

Hence,
$$\vec{x} - \vec{p}$$
 is orthogonal to \vec{n} .

So the equation of our plane is
$$\overline{n} \cdot (\overline{x} - \overline{p}) = 0$$
, or
 $n_1(x_1 - p_1) + n_2(x_2 - p_2) + n_3(x_3 - p_3) = 0$

This can also be written as

$$N_1 X_1 + N_2 X_2 + N_3 X_3 = d$$

where

$$d = n_1 p_1 + n_2 p_2 + n_3 p_3 = \vec{N} \cdot \vec{p}.$$

Ex: Find the scalar equation of the plane in
$$\mathbb{R}^3$$
 that
passes through $(0, -2, 3)$ and is orthogonal to $\begin{bmatrix} 4\\1\\-1 \end{bmatrix}$.

Solution: The normal vector is
$$\vec{n} = \begin{bmatrix} 4\\-1\\1 \end{bmatrix}$$
, and a point
on the plane is $P(0, -2, 3)$.

The equation is
$$n_1(x_1 - p_1) + n_2(x_2 - p_2) + n_3(x_3 - p_3) = 0$$

So $4(x_1 - 0) + (-1)(x_2 - (-2)) + (x_3 - 3) = 0$
 $\Rightarrow 4x_1 - (x_2 + 2) + (x_3 - 3) = 0$
OR $4x_1 - x_2 + x_3 = 5$ $(n_1 x_1 + n_2 x_2 + n_3 x_3 = d)$

<u>Definition</u>: Two planes in R³ are <u>parallel</u> if the normal vector of one plane is a non-zero scalar multiple of the normal vector of the other.

Two planes are orthogonal (perpendicular) if their normal vectors are orthogonal.
Ex: The planes
$$2x_1+x_2+3x_3=0$$
 are parallel,
 $4x_1+2x_2+6x_3=12$
as their normal vectors are $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$ and $\begin{bmatrix} 4\\2\\2\\6 \end{bmatrix} = 2\begin{bmatrix} 2\\1\\3 \end{bmatrix}$,
respectively.
Exercise: Are they parallel to $-x_1 - \frac{1}{2}x_2 - \frac{3}{2}x_3 = 7$?
What about to $x_1 + x_2 - x_3 = -1$?
Ex: The planes $4x_1 + 2x_2 + 6x_3 = 12$ are orthogonal
 $x_1 + x_2 - x_3 = -1$?
as their normal vectors are $\begin{bmatrix} 4\\2\\6 \end{bmatrix}$ and $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, and
 $\begin{bmatrix} 4\\2\\6 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\-1 \end{bmatrix} = (4)(1) + (2)(1) + (6)(-1) = 0$.

Exercise: Is either plane orthogonal to $2x_1+x_2+3x_3=0$?

Ex: Find a scalar equation of the plane in
$$\mathbb{R}^3$$
 that passes
through $(1,2,3)$ and is parallel to $4x, -x_2 + 10x_3 = 7$
Solution: The normal vector for the parallel plane is
 $\begin{bmatrix} 4\\-1\\10 \end{bmatrix}$, so our normal vector \vec{n} can be any (non-zero)
multiple of this vector.
Let's take $\vec{n} = \begin{bmatrix} 4\\-1\\10 \end{bmatrix}$, and $\vec{p} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$ is given.
The plane is $\frac{4}{(x_1-1)-1(x_2-2)+10(x_3-3)=0}$
 \mathbb{QR} $\frac{4x_1 - x_2 + 10x_3 = -32$
Ex: Find a scalar equation of the plane in \mathbb{R}^3 that passes

through
$$(1,2,3)$$
 and is orthogonal to $4x, -x_2 + 10x_3 = 7$

Solution: Our normal vector must be orthogonal to
$$\begin{bmatrix} 4\\-1\\10 \end{bmatrix}$$
.
I think $\begin{bmatrix} 0\\10\\1 \end{bmatrix}$ works. Can you think of another example?
Try to get the equation of the plane from here!

Hyperplanes:
A hyperplane through the origin in
$$\mathbb{R}^n$$
 is a collection
of vectors $\vec{x} : \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ that are all orthogonal to a given
Vector $\vec{m} : \begin{bmatrix} m_1 \\ m_2 \\ m_n \end{bmatrix}$.
In \mathbb{R}^2 , this is a
line through the origin.
In \mathbb{R}^3 , this is a
plane through the origin.
 \vec{x}_1

The equation of a hyperplane through the origin is $\vec{m} \cdot \vec{x} = 0$,

$$M_1 \mathcal{X}_1 + M_2 \mathcal{X}_2 + \dots + M_n \mathcal{X}_n = 0$$

The same work we did for planes in
$$\mathbb{R}^3$$
 shows that a hyperplane through $P(p_1, p_2, \dots, p_n)$ and orthogonal to $\overline{m} = \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_n \end{pmatrix}$ has scalar equation $\overline{m} \cdot (\overline{x} - \overline{p}) = 0$.

That is,
$$M_1(x_1-p_1) + M_2(x_2-p_2) + \dots + M_n(x_n-p_n) = 0$$
,

which can also be written as

OR

$$M_1 \mathcal{P}_1 + M_2 \mathcal{P}_2 + \cdots + M_n \mathcal{P}_n = \overline{M} \cdot \overline{p}$$

Ex: Find the scalar equation of the hyperplane in
$$\mathbb{R}^4$$

that has normal vector $\begin{bmatrix} 1\\0\\2\\-3 \end{bmatrix}$ and passes through (4,1,8,2).

Solution: Here,
$$\vec{m} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ -3 \end{bmatrix}$$
 and $\vec{p} = \begin{bmatrix} 4 \\ 1 \\ 8 \\ 2 \end{bmatrix}$ so the equation is
 $1(x_1 - 4) + 0(x_2 - 1) + 2(x_3 - 8) - 3(x_4 - 2) = 0$
 $\Rightarrow (x_1 - 4) + 2(x_3 - 8) - 3(x_4 - 2) = 0$
OR
 $\chi_1 + 2\chi_2 - 3\chi_4 = |4|$