\$1. 3-Planes \& Hyperplanes
Let $\vec{n}=\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right]$ be a non-zero vector in \mathbb{R}^{3}.
Consider all vectors \vec{X} that are orthogonal to \vec{n}.

These vectors form a plane passing through the origin.

The scalar equation of a plane through the origin that is orthogonal to $\vec{n}=\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right]$ is $\vec{n} \cdot \vec{x}=0$, or

$$
n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}=0 .
$$

A non-zero vector that is orthogonal to the plane (e.g., \vec{n}) is called a normal vector of the plane.

Ex: Find the scalar equation of a plane through the origin in \mathbb{R}^{3} that has $\vec{n}=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]$ as a normal vector.

Solution: The plane contains all vectors $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ orthogonal to $\vec{n} \quad(i . e ., \vec{n} \cdot \vec{x}=0$)

Thus, the equation is $2 x_{1}+3 x_{2}-x_{3}=0$.

What if the plane passes through a point $P\left(p_{1}, p_{2}, p_{3}\right)$, but not necessarily through the origin?

Suppose $\vec{n}=\left[\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right]$ is a normal vector.

If $X\left(x_{1}, x_{2}, x_{3}\right)$ is on this plane,
then $\overrightarrow{P X}=\vec{x}-\vec{p}$ is a line segment in the plane.

Hence, $\vec{x}-\vec{p}$ is orthogonal to \vec{n}.

So the equation of our plane is $\vec{n} \cdot(\vec{x}-\vec{p})=0$, or

$$
n_{1}\left(x_{1}-p_{1}\right)+n_{2}\left(x_{2}-p_{2}\right)+n_{3}\left(x_{3}-p_{3}\right)=0
$$

This can also be written as

$$
n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}=d
$$

where

$$
d=n_{1} p_{1}+n_{2} p_{2}+n_{3} p_{3}=\vec{n} \cdot \vec{p}
$$

Ex: Find the scalar equation of the plane in \mathbb{R}^{3} that passes through $(0,-2,3)$ and is orthogonal to $\left[\begin{array}{c}4 \\ 1 \\ -1\end{array}\right]$.

Solution: The normal vector is $\vec{n}=\left[\begin{array}{r}4 \\ -1 \\ 1\end{array}\right]$, and a point on the plane is $P(0,-2,3)$.

The equation is $n_{1}\left(x_{1}-p_{1}\right)+n_{2}\left(x_{2}-p_{2}\right)+n_{3}\left(x_{3}-p_{3}\right)=0$
So $4\left(x_{1}-0\right)+(-1)\left(x_{2}-(-2)\right)+\left(x_{3}-3\right)=0$

$$
\Rightarrow 4 x_{1}-\left(x_{2}+2\right)+\left(x_{3}-3\right)=0
$$

OR $\quad 4 x_{1}-x_{2}+x_{3}=5 \quad\left(n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}=d\right)$

Definition: Two planes in \mathbb{R}^{3} are parallel if the normal vector of one plane is a non-zero scalar multiple of the normal vector of the other.

Two planes are orthogonal (perpendicular) if their normal vectors are orthogonal.

Ex: The planes $2 x_{1}+x_{2}+\underline{3} x_{3}=0$ are parallel,

$$
4 x_{1}+2 x_{2}+6 x_{3}=12
$$

as their normal vectors are $\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right]=2\left[\begin{array}{c}2 \\ 1 \\ 3\end{array}\right]$, respectively.

Exercise: Are they parallel to $-x_{1}-\frac{1}{2} x_{2}-3 / 2 x_{3}=7$?
What about to $x_{1}+x_{2}-x_{3}=-1$?

Ex: The planes $4 x_{1}+2 x_{2}+6 x_{3}=12$ are orthogonal,

$$
x_{1}+x_{2}-x_{3}=-1
$$

as their normal vectors are $\left[\begin{array}{l}4 \\ 2 \\ 6\end{array}\right]$ and $\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$, and

$$
\left[\begin{array}{l}
4 \\
2 \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=(4)(1)+(2)(1)+(6)(-1)=0
$$

Exercise: Is either plane orthogonal to

$$
2 x_{1}+x_{2}+3 x_{3}=0 ?
$$

Ex: Find a scalar equation of the plane in \mathbb{R}^{3} that passes through $(1,2,3)$ and is parallel to $4 x_{1}-x_{2}+10 x_{3}=7$

Solution: The normal vector for the parallel plane is $\left[\begin{array}{c}4 \\ -1 \\ 10\end{array}\right]$, so our normal vector \vec{n} can be any (non-zero)
multiple of this vector.

Let's take $\vec{n}=\left[\begin{array}{c}4 \\ -1 \\ 10\end{array}\right]$, and $\vec{p}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is given.
The plane is $4\left(x_{1}-1\right)-1\left(x_{2}-2\right)+10\left(x_{3}-3\right)=0$
OR $4 x_{1}-x_{2}+10 x_{3}=-32$

Ex: Find a scalar equation of the plane in \mathbb{R}^{3} that passes through $(1,2,3)$ and is orthogonal to $4 x_{1}-x_{2}+10 x_{3}=7$

Solution: Our normal vector must be orthogonal to $\left[\begin{array}{c}4 \\ -1 \\ 10\end{array}\right]$. I think $\left[\begin{array}{c}0 \\ 10 \\ 1\end{array}\right]$ works. Can you think of another example?

Try to get the equation of the plane from here!

Hyperplanes:
A hyperplane through the origin in \mathbb{R}^{n} is a collection of vectors $\vec{X}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ that are all orthogonal to a given vector $\vec{m}=\left[\begin{array}{c}m_{1} \\ m_{2} \\ \vdots \\ m_{n}\end{array}\right]$.

In \mathbb{R}^{2}, this is a line through the origin.

In \mathbb{R}^{3}, this is a plane through the origin

The equation of a hyperplane through the origin is $\vec{m} \cdot \vec{x}=0$,

OR

$$
m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}=0 .
$$

We can also talk about hyperplanes that pass through a point $P\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ but not necessarily through the origin.

The same work we did for planes in \mathbb{R}^{3} shows that a hyperplane through $P\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ and orthogonal to $\vec{m}=\left[\begin{array}{c}m_{1} \\ m_{2} \\ \vdots \\ m_{n}\end{array}\right]$ has scalar equation

$$
\stackrel{\rightharpoonup}{m} \cdot(\vec{x}-\vec{p})=0
$$

That is, $\quad m_{1}\left(x_{1}-p_{1}\right)+m_{2}\left(x_{2}-p_{2}\right)+\ldots+m_{n}\left(x_{n}-p_{n}\right)=0$,
which can also be written as

$$
m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}=\vec{m} \cdot \vec{p}
$$

Ex: Find the scalar equation of the hyperplane in \mathbb{R}^{4} that has normal vector $\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -3\end{array}\right]$ and passes through $(4,1,8,2)$.

Solution: Here, $\vec{m}=\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -3\end{array}\right]$ and $\vec{p}=\left[\begin{array}{l}4 \\ 1 \\ 8 \\ 2\end{array}\right]$ so the equation is

$$
\begin{aligned}
& 1\left(x_{1}-4\right)+0\left(x_{2}-1\right)+2\left(x_{3}-8\right)-3\left(x_{4}-2\right)=0 \\
& \Rightarrow\left(x_{1}-4\right)+2\left(x_{3}-8\right)-3\left(x_{4}-2\right)=0
\end{aligned}
$$

OR $\quad x_{1}+2 x_{2}-3 x_{4}=14$

