§1.2 -Length; Dot Product; Orthogonality

Length
The length (or norm) of a vector $\vec{x} \in \mathbb{R}^{n}$ is denoted by $\|\vec{x}\|$

Ex:

$$
\begin{aligned}
& \left\|\left[\begin{array}{c}
1 \\
0
\end{array}\right]\right\|=1 \\
& \left\|\left[\begin{array}{c}
0 \\
-2
\end{array}\right]\right\|=2 \\
& \left\|\left[\begin{array}{c}
0 \\
0
\end{array}\right]\right\|=0
\end{aligned}
$$

If $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ in \mathbb{R}^{2}, what is $\|\vec{x}\|$?

By the Pythagorean Theorem, we have

$$
\|\vec{x}\|^{2}=x_{1}^{2}+x_{2}^{2}
$$

So

$$
\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

Ex: $\left\|\left[\begin{array}{c}-3 \\ 5\end{array}\right]\right\|=\sqrt{(-3)^{2}+5^{2}}=\sqrt{9+25}=\sqrt{34}$

What about $\left\|\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right\|$ in \mathbb{R}^{3} ?
\vec{x} is the sum of the two vectors in the green right triangle.

So,

$$
\begin{aligned}
&\|\vec{x}\|^{2}=\left(\sqrt{x_{1}^{2}+x_{2}^{2}}\right)^{2}+x_{3}^{2} \quad \text { (Pythagoras!) } \\
&=\left(x_{1}^{2}+x_{2}^{2}\right)+x_{3}^{2} \\
& \Rightarrow\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}
\end{aligned}
$$

Definition: The length (or norm) of a vector $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \in \mathbb{R}^{n}$ is

$$
\|\vec{x}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

If $\|\vec{x}\|=1, \vec{x}$ is called a unit vector.
Ex: If $\vec{x}=\left[\begin{array}{c}3 \\ 1 \\ 0 \\ -1\end{array}\right] \in \mathbb{R}^{4}$, then

$$
\|\vec{x}\|=\sqrt{3^{2}+1^{2}+0^{2}+(-1)^{2}}=\sqrt{9+1+0+1}=\sqrt{11}
$$

Theorem (Properties of $\|\cdot\|$): Let $\vec{x}, \tilde{y} \in \mathbb{R}^{n}$, and $t \in \mathbb{R}$.

1. $\|\vec{x}\| \geqslant 0$, and $\|\vec{x}\|=0$ if and only if $\vec{x}=\overrightarrow{0}$.
2. $\|t \vec{x}\|=|t|\|\vec{x}\|$
3. $\|\vec{x}+\vec{y}\| \leqslant\|\vec{x}\|+\|\vec{y}\| . \quad$ (Triangle Inequality)

Think about 1. Why is $\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}$ always $\geqslant 0$? When is it =0?

For 2., we have

$$
\begin{aligned}
\|t \vec{x}\| & =\sqrt{\left(t x_{1}\right)^{2}+\left(t x_{2}\right)^{2}+\cdots+\left(t x_{n}\right)^{2}} \\
& =\sqrt{t^{2} x_{1}^{2}+t^{2} x_{2}^{2}+\cdots+t^{2} x_{n}^{2}} \\
& =\sqrt{t^{2}} \sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=|t|\|\vec{x}\| .
\end{aligned}
$$

Geometrically, 3. says that the shortest path between two points is a straight line.

Exercise: What is the norm of $\frac{1}{\|\vec{x}\|} \vec{x}$ if
(a) $\vec{x}=\left[\begin{array}{c}3 \\ 1 \\ 0 \\ -1\end{array}\right]$?
(b) \vec{x} is any non-zero vector in \mathbb{R}^{n} ?

The notion of length also allows us to measure distance!

The distance from \vec{x} to \vec{y} in \mathbb{R}^{n} is $\|\vec{x}-\vec{y}\|$.

Exercise: Compute the distance from

$$
\vec{x}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \text { to } \vec{y}=\left[\begin{array}{c}
-1 \\
0 \\
5
\end{array}\right] .
$$

Angles \& Dot Product

Enough with vectors! Let's go back to highschool.
Q: If a, b, c are given, what is the value of θ ?

The cosine law can help us:

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

New $Q:$ If $\vec{X}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, what is
the angle θ between \vec{x} and \vec{y} ?

Compare the picture on the right with the one above.

What does the cosine law say now??

$$
\begin{aligned}
&\|\vec{x}-\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2}-2\|\vec{x}\|\|\vec{y}\| \cos \theta \\
& \Rightarrow\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}=\left(x_{1}^{2}+x_{2}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}\right)-2\|\vec{x}\|\|\vec{y}\| \cos \theta \\
& \Rightarrow\left(x_{1}^{\prime}-2 x_{1} y_{1}+y_{1}^{\prime}\right)+\left(x_{2}^{\prime 2}-2 x_{2} y_{2}+y_{2}^{\prime}\right) \\
&=\left(x_{1}^{x_{1}^{\prime}}+x_{2}^{x_{2}^{\prime}}\right)+\left(y_{1}^{\prime}+y_{2}^{2_{2}^{\prime}}\right)-2\|\vec{x}\|\|\vec{y}\| \cos \theta \\
& \Rightarrow-x_{2}^{\prime}\left(x_{1} y_{1}+x_{2} y_{2}\right)=-2\|\vec{x}\|\|\vec{y}\| \cos \theta \\
& \Rightarrow x_{1} y_{1}+x_{2} y_{2}=\|\vec{x}\|\|\vec{y}\| \cos \theta
\end{aligned}
$$

Ex: If $\vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{y}=\left[\begin{array}{c}\sqrt{3} \\ 1\end{array}\right]$, then $\|\vec{x}\|=1,\|\vec{y}\|=2$, and $x_{1} y_{1}+x_{2} y_{2}=\sqrt{3}$.

So $\sqrt{3}=1 \cdot 2 \cdot \cos \theta \Rightarrow \cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\pi / 6$

There are many angles θ with $\cos \theta=\frac{\sqrt{3}}{2} \ldots$
what about $\theta=\frac{11 \pi}{6}$?

Note: We always pick θ so that $0 \leq \theta \leq \pi$.

Something similar happens in \mathbb{R}^{3} :
If θ is the angle between $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$, then

$$
x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=\|\vec{x}\|\|\vec{y}\| \cos \theta
$$

Definition: Let $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ be vectors
The dot product of \vec{x} and \vec{y} is

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Ex: $\begin{aligned} {\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right] \cdot\left[\begin{array}{c}-4 \\ 0 \\ 1\end{array}\right] } & =(3)(-4)+(2)(0)+(-1)(1) \\ & =(-12)+0+(-1)\end{aligned}$

$$
=-13
$$

Theorem (Properties of \cdot): Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{n}$, and $t \in \mathbb{R}$.

1. $\vec{x} \cdot \vec{x}=\|\vec{x}\|^{2}$ Super useful!!
2. $\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x}$
3. $\vec{x} \cdot(\vec{y}+\vec{z})=\vec{x} \cdot \vec{y}+\vec{x} \cdot \vec{z}$
4. $(t \vec{x}) \cdot \vec{y}=t(\vec{x} \cdot \vec{y})=\vec{x} \cdot(t \vec{y})$
5. $|\vec{x} \cdot \vec{y}| \leq\|\vec{x}\|\|\vec{y}\| \quad$ (Canchy-Schwarz Inequality)

Try to prove 1. -4. on your own.
The book has a proof of 5. (harder)

In \mathbb{R}^{2} and \mathbb{R}^{3}, the angle between \vec{x} and \vec{y} is the $\theta \in[0, \pi]$ such that

$$
\vec{x} \cdot \stackrel{\rightharpoonup}{y}=\|\vec{x}\|\|\vec{y}\| \cos \theta
$$

We can use this formula to define the angle between (non-zero) vectors \vec{x} and \vec{y} in \mathbb{R}^{n} !

It's the $\theta \in[0, \pi]$ such that $\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \cos \theta$.
(The Cauchy-Schwarz Inequality says θ always exists!)

Exercise: Let $\vec{x}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $\vec{y}=\left[\begin{array}{c}-2 \\ 0 \\ 0 \\ 1\end{array}\right]$.
(a) Compute $\|\vec{x}\|,\|\vec{y}\|$, and $\vec{x} \cdot \vec{y}$.
(b) Use the above formula to show that \vec{x} and \vec{y} meet at an angle of ≈ 1.83 radians.

Orthogonality:
We know that dot products are related to angles by the cosine formula above.

Q: What does it mean if $\vec{x} \cdot \vec{y}=0$ for two non-zero vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$?

In this case $0=\underbrace{\|\vec{x}\|}_{\neq 0} \underbrace{\|\vec{y}\|}_{\neq 0} \cos \theta$, so $\cos \theta=0$. Then $\theta=\pi / 2$, so \vec{x} and \vec{y} are perpendicular!

Conversely, if \vec{x} and \vec{y} are perpendicular, then they meet at an angle of $\theta=\pi / 2$. Hence,

$$
\vec{x} \cdot \vec{y}=\|\vec{x}\|\|\vec{y}\| \underbrace{\cos (\pi / 2)}_{=0}=0
$$

We can therefore make the following definition:

Definition: Vectors $\vec{x}, \vec{y} \in \mathbb{R}^{n}$ are perpendicular (or orthogonal) if and only if $\vec{x} \cdot \vec{y}=0$.

When \vec{x} is orthogonal to \vec{y}, we write $\vec{x} \perp \vec{y}$

Ex: $\overrightarrow{0}$ is orthogonal to all $\vec{x} \in \mathbb{R}^{n}$, as $\overrightarrow{0} \cdot \vec{x}=0$. $\left[\begin{array}{l}1 \\ 0\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]=0$, So these vectors are orthogonal.
$\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right] \cdot\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]=1$, So these vectors are NOT orthogonal.

Two lines in \mathbb{R}^{n} are orthogonal if their direction vectors are orthogonal.

Exercise: Which of the following pairs of lines are orthogonal?
(i) $\vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 4\end{array}\right] ; \quad \vec{x}=\left[\begin{array}{l}3 \\ 3\end{array}\right]+t\left[\begin{array}{c}5 \\ -2\end{array}\right] \quad(t \in \mathbb{R})$
(ii) $\vec{x}=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 1\end{array}\right]+t\left[\begin{array}{c}6 \\ 1 \\ -1 \\ -2\end{array}\right] ; \quad \vec{x}=t\left[\begin{array}{c}-1 \\ 2 \\ 2 \\ -3\end{array}\right] \quad(t \in \mathbb{R})$
(iii) $\left\{\begin{array}{l}x_{1}=2+t \\ x_{2}=4-2 t \\ x_{3}=1-5 t\end{array} ; \quad\left\{\begin{array}{l}x_{1}=-9+6 t \\ x_{2}=3+3 t \\ x_{3}=2\end{array} \quad(t \in \mathbb{R})\right.\right.$
(iv) The line passing through ; The line passing through $P(2,3)$ and $Q(4,5)$ $R(1,2)$ and parallel to $\vec{x}=\left[\begin{array}{l}2 \\ 2\end{array}\right]+t\left[\begin{array}{c}1 \\ -1\end{array}\right] \quad(t \in \mathbb{R})$

