$$\frac{1}{2} = \sum_{i=1}^{n} \frac{1}{2} + \sum_{i=1}^{n$$

$$EX: \|\begin{bmatrix} -3\\5 \end{bmatrix}\| = \int (-3)^2 + 5^2 = \sqrt{9+25} = \sqrt{34'}$$

What about
$$\left\| \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} \right\|$$
 in \mathbb{R}^{3} ?

$$\vec{X}$$
 is the sum of the two vectors in the green right triangle.

So,
$$\|\vec{X}\|^{2} = (\sqrt{x_{1}^{2} + x_{2}^{2}})^{2} + \chi_{3}^{2}$$
 (Pythagoras!)

$$= (\chi_{1}^{2} + \chi_{2}^{2}) + \chi_{3}^{2}$$

$$\implies \||\vec{X}\| = \sqrt{\chi_{1}^{2} + \chi_{2}^{2} + \chi_{3}^{2}}$$
Notice a pattern?

Definition: The length (or norm) of a vector
$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 is
$$\|\vec{X}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

If
$$\|\vec{x}\| = 1$$
, \vec{x} is called a unit vector.
Ex: If $\vec{x} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \in \mathbb{R}^{4}$, then
 $\|\vec{x}\| = \sqrt{3^{2} + 1^{2} + 0^{2} + (-1)^{2}} = \sqrt{9 + 1 + 0 + 1} = \sqrt{11}$
Theorem (Properties of $\|\cdot\|$): Let $\vec{x}, \vec{y} \in \mathbb{R}^{n}$, and $t \in \mathbb{R}$.
1. $\|\vec{x}\| \ge 0$, and $\|\vec{x}\| = 0$ if and only if $\vec{x} = \vec{0}$.
2. $\|t\vec{x}\| = |t| \|\vec{x}\|$
3. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$. (Triangle Inequality)
Think about 1. Why is $\sqrt{x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}}$ always ≥ 0 ?
When is it $= 0$?
For 2, we have
 $\|t\vec{x}\| = \sqrt{(tx_{1})^{2} + (tx_{2})^{2} + \dots + (tx_{n})^{2}} = |t| \|\vec{x}\|$.

 $\|\vec{x} + \vec{y}\| \leq \|\vec{x}\| + \|\vec{y}\|$

Exercise: What is the norm of
$$\frac{1}{\|\vec{x}\|} \vec{x}$$
 if
(a) $\vec{x} = \begin{bmatrix} 3 \\ 1 \\ 0 \\ -1 \end{bmatrix}$?
(b) \vec{x} is any non-zero vector in \mathbb{R}^n ?

The notion of length also allows us to measure distance!

Exercise: Compute the distance from $\vec{X} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ to $\vec{Y} = \begin{bmatrix} -1 \\ 0 \\ 5 \end{bmatrix}$.

Angles & Dot Product
Enough with viectors! Let's go back to highschool.
Q IF a,b,c are given,
what is the value of
$$\Theta$$
?
The cosine law can help us:
 $c^2 = a^2 + b^2 - 2ab \cos\Theta$
New Q: IF $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, what is
the angle Θ between \vec{x} and \vec{y} ?
Compare the picture on the
right with the one above.
What does the cosine
law say now??

$$\begin{aligned} \|\vec{x} - \vec{y}\|^{2} &= \|\vec{x}\|^{2} + \|\vec{y}\|^{2} - 2\|\vec{x}\|\|\vec{y}\| \cos \Theta \\ \Rightarrow (x_{1} - y_{1})^{2} + (x_{2} - y_{2})^{2} &= (x_{1}^{2} + x_{2}^{2}) + (y_{1}^{2} + y_{2}^{2}) - 2\|\vec{x}\|\|\vec{y}\| \cos \Theta \\ \Rightarrow (x_{1}^{2} - 2x_{1}y_{1} + y_{1}^{2}) + (x_{2}^{2} - 2x_{2}y_{2} + y_{1}^{2}) \\ &= (x_{1}^{2} + x_{2}^{2}) + (y_{1}^{2} + y_{2}^{2}) - 2\|\vec{x}\|\|\vec{y}\| \cos \Theta \end{aligned}$$

Ex: If $X = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\overline{y} = \begin{bmatrix} 53 \\ 1 \end{bmatrix}$, then $\|\overline{x}\| = 1$, $\|\overline{y}\| = 2$, and $\varkappa_{i}y_{i} + \varkappa_{2}y_{2} = 53$.

So $\sqrt{3} = 1 \cdot 2 \cdot \cos \Theta \implies \cos \Theta = \sqrt{3} \implies \Theta = \frac{\pi}{6}$

Something similar happens in
$$\mathbb{R}^3$$
:
If Θ is the angle between $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$, then
 $\begin{array}{c} \varkappa_1 y_1 + \varkappa_2 y_2 + \varkappa_3 y_3 = \|\vec{x}\| \|\vec{y}\| \cos \theta \end{array}$

Definition: Let
$$\vec{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ be vectors
The dot product of \vec{X} and \vec{y} is
 $\vec{X} \cdot \vec{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$
 $\vec{X} \cdot \vec{y} = (3)(-4) + (2)(0) + (-1)(1)$
 $= (-12) + 0 + (-1)$
 $= [-13]$

Theorem (Properties of
$$\cdot$$
): Let $\vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^{n}$, and $t \in \mathbb{R}$.
1. $\vec{x} \cdot \vec{x} = \|\vec{x}\|^{2}$ Super Useful !!
2. $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
3. $\vec{x} \cdot (\vec{y} \cdot \vec{z}) = \vec{x} \cdot \vec{y} + \vec{x} \cdot \vec{z}$
4. $(t\vec{x}) \cdot \vec{y} = t(\vec{x} \cdot \vec{y}) = \vec{x} \cdot (t\vec{y})$
5. $|\vec{x} \cdot \vec{y}| \leq ||\vec{x}|| ||\vec{y}||$ (Cauchy - Schwarz Inequality)
Try to prove 1. - 4. on your own.
The book has a proof of 5. (harder)

In
$$\mathbb{R}^2$$
 and \mathbb{R}^3 , the angle between \vec{x} and \vec{y}
is the $\Theta \in [0, \pi]$ such that
 $\vec{x} \cdot \vec{y} = \|\vec{x}\| \|\vec{y}\| \cos \Theta$.

We can use this formula to define the angle between (non-zero) vectors \vec{x} and \vec{y} in \mathbb{R}^n !

It's the
$$\Theta \in [0, \pi]$$
 such that $\vec{X} \cdot \vec{y} = \|\vec{X}\| \|\vec{y}\| \cos \Theta$.
(The Cauchy-Schwarz Inequality says Θ always exists!)

Exercise: Let
$$\vec{X} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \end{bmatrix}$.
(a) Compute $\|\vec{X}\|$, $\|\vec{y}\|$, and $\vec{X} \cdot \vec{y}$.
(b) Use the above formula to show that \vec{X} and \vec{y} meet at an angle of ≈ 1.83 radians.

Orthogonality:
We know that dot products are related to angles
by the cosine formula above.
Q: What does it mean if
$$\vec{x} \cdot \vec{y} = 0$$
 for two
hon-zero vectors $\vec{x}, \vec{y} \in \mathbb{R}^n$?
In this case $0 = \|\vec{x}\| \|\vec{y}\| \cos \theta$, so $\cos \theta = 0$.

Then $\Theta = \pi/2$, so \overline{X} and \overline{y} are perpendicular!

Conversely, if
$$\vec{X}$$
 and \vec{y} are perpendicular, then they
meet at an angle of $\Theta = \frac{\pi}{2}$. Hence,
 $\vec{X} \cdot \vec{y} = \|\vec{X}\| \|\vec{y}\| \cos(\frac{\pi}{2}) = 0$

We can therefore make the following definition:

Definition: Vectors
$$\vec{x}, \vec{y} \in \mathbb{R}^n$$
 are perpendicular
(or orthogonal) if and only if $\vec{x} \cdot \vec{y} = 0$.

When
$$\vec{X}$$
 is orthogonal to \vec{y} , we write $\vec{X} \perp \vec{y}$.

EX

$$\vec{0}$$
 is orthogonal to all $\vec{X} \in \mathbb{R}^n$, as $\vec{0} \cdot \vec{X} = 0$.
 $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0$, so these vectors are orthogonal.
 $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 1$, so these vectors are NOT orthogonal.

(i)
$$\vec{X} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
; $\vec{X} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} + t \begin{bmatrix} 5 \\ -2 \end{bmatrix}$ ($t \in \mathbb{R}$)

(ii)
$$X = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \begin{bmatrix} 6 \\ 1 \\ -1 \\ -2 \end{bmatrix}$$
; $X = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}$ ($t \in \mathbb{R}$)

(iii)
$$\begin{cases} x_1 = 2 + t \\ x_2 = 4 - 2t \end{cases}; \qquad \begin{cases} x_1 = -9 + 6t \\ x_2 = 3 + 3t \\ x_3 = 1 - 5t \end{cases} \qquad \begin{cases} x_2 = 3 + 3t \\ x_3 = 2 \end{cases}$$

(iv) The line passing through ; The line passing through
$$P(2,3)$$
 and $Q(4,5)$; $R(1,2)$ and parallel to $\vec{X} = \begin{bmatrix} 2\\ 2 \end{bmatrix} + t \begin{bmatrix} 1\\ -1 \end{bmatrix}$ (ter)