Chapter 1: Vector Geometry
$\xi 1.1$ - Vectors \& Lines
$R=$ the set of all real numbers.

$$
\text { e.g. } 1 \underset{\in}{\text { Cololongs to" }}, 2 \in \mathbb{R},-3 \in \mathbb{R}, \pi \in \mathbb{R}, \frac{1}{2} \in \mathbb{R},-\sqrt{2} \in \mathbb{R}
$$

We often think of \mathbb{R} as a 1-dimensional space (the real line):

\mathbb{R} has many nice properties... here are two very special ones:
(1) We can add!

If $x \in \mathbb{R}$ and $y \in \mathbb{R}$, then $x+y \in \mathbb{R}$.
$(\mathbb{R}$ is closed under addition)
(2) We can scale/stretch!

If $x \in \mathbb{R}$, then $t x \in \mathbb{R}$ for all real numbers t.
$(\mathbb{R}$ is closed under scalar multiplication)

Loosely speaking, a set with properties (1) + (2) is called a real vector space or a vector space over \mathbb{R}.

In this course, well study real vector spaces in higher dimensions.
$\mathbb{R}^{2}: 2$-Dimensional Space

We can represent elements in 2-dimensions as points...

BUT it can also be very useful to view them as arrows starting at the origin.

These arrows are called vectors

Notation: The point $x\left(x_{1}, x_{2}\right)$ corresponds to the vector $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. The zero vector is $\vec{O}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Ex: The vectors $\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 3.5\end{array}\right],\left[\begin{array}{c}\pi \\ -1\end{array}\right]$ and their corresponding points are plotted on the right.

Definition: \mathbb{R}^{2} is the set of all vectors of the form $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, where x_{1}, x_{2} are real numbers, i.e.,

$$
\mathbb{R}^{2}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]: x_{1}, x_{2} \in \mathbb{R}\right\}
$$

Well often switch between thinking of clements in \mathbb{R}^{2} as points $P\left(p_{1}, p_{2}\right)$ and vectors $\vec{p}=\left[\begin{array}{l}p_{1} \\ p_{2}\end{array}\right]$

Q: Can we add and scale/stretch in \mathbb{R}^{2} ? YES!

Addition: If $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, then

$$
\vec{x}+\vec{y}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]
$$

Scalar Multiplication: If $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $t \in \mathbb{R}$, then

$$
t \stackrel{\rightharpoonup}{x}=t\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
t x_{1} \\
t x_{2}
\end{array}\right]
$$

These operations can be viewed geometrically!

To add, connect vectors tip to tail.
Ex: $\left[\begin{array}{l}1 \\ 3\end{array}\right]+\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 4\end{array}\right]$

To scalar multiply by t, stretch/contract vector by a factor of t.

Ex: $\quad 3 \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}6 \\ 3\end{array}\right]$

* Reverse direction if t is negative $*$

Ex: $\quad-\frac{1}{2}\left[\begin{array}{c}-4 \\ 6\end{array}\right]=\left[\begin{array}{c}2 \\ -3\end{array}\right]$

This also gives us a way to subtract!

If $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, then

$$
\vec{x}-\vec{y}=\vec{x}+(-1) \vec{y}=\left[\begin{array}{l}
x_{1}-y_{1} \\
x_{2}-y_{2}
\end{array}\right]
$$

Ex: $\left[\begin{array}{l}1 \\ 3\end{array}\right]-\left[\begin{array}{l}6 \\ 3\end{array}\right]=\left[\begin{array}{c}-5 \\ 0\end{array}\right]$

Graphically, reverse \vec{y}...

\ldots and add to \vec{x} !

As we would expect,

Vectors do start at the origin!

In many geometrical problems, however, it is useful to consider directed line segments that don't start at the origin.

Definition: The directed line segment from point Q to point R is denoted $\overrightarrow{Q R}$.

In many problems, weill be interested in the length and direction of a directed line segment, but not its position.

So, well consider all of these directed line segments

to be the same as $\overrightarrow{O P}=\vec{P}$.

Thus, the line segment $\overrightarrow{Q R}$ from \vec{Q} to \vec{R} is the same for us as $\vec{r}-\vec{q}$

$$
\stackrel{\rightharpoonup}{Q R}=\vec{r}-\stackrel{\rightharpoonup}{q}
$$

Vectors in \mathbb{R}^{n}
Everything above can also be done in higher dimensions:

$$
\mathbb{R}^{3}=\left\{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]: x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}
$$

We can visualize vectors in \mathbb{R}^{3} just as we did in \mathbb{R}^{2}

Here, the three axes are oriented according to the right hand rule.

More generally, if n is any positive integer,

$$
\mathbb{R}^{n}=\left\{\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]: x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

Definition: If $\vec{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right], \vec{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ are vectors in \mathbb{R}^{n}
and $t \in \mathbb{R}$, then

$$
\begin{aligned}
\vec{x}+\vec{y} & =\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right] \quad \text { (Addition) } \\
t \vec{x} & =\left[\begin{array}{c}
t x_{1} \\
t x_{2} \\
\vdots \\
t x_{n}
\end{array}\right] \quad \text { (Scalar Multiplication) }
\end{aligned}
$$

Ex: $\operatorname{In} \mathbb{R}^{4}, \quad 2\left[\begin{array}{c}3 \\ 0 \\ 1 / 2 \\ 4\end{array}\right]+\left[\begin{array}{c}1 \\ 1 \\ 6 \\ -2\end{array}\right]=\left[\begin{array}{l}6 \\ 0 \\ 1 \\ 8\end{array}\right]+\left[\begin{array}{c}1 \\ 1 \\ 6 \\ -2\end{array}\right]=\left[\begin{array}{l}7 \\ 1 \\ 7 \\ 6\end{array}\right]$

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$ we have
(1) $\vec{x}+\vec{y} \in \mathbb{R}^{n}$
(closed under addition)
(2) $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (addition is commutative)
(3) $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (addition is associative)
(4) There exists a vector $\overrightarrow{0} \in \mathbb{R}^{n}$ such that $\vec{z}+\overrightarrow{0}=\vec{z}$ for all $\vec{z} \in \mathbb{R}^{n} \quad$ (zero vector)
(5) For each $\vec{x} \in \mathbb{R}^{n}$ there exists a vector $-\vec{x} \in \mathbb{R}^{n}$ such that $\vec{x}+(-\vec{x})=\overrightarrow{0}$ (additive inverses)
(6) $t \vec{x} \in \mathbb{R}^{n} \quad$ (closed under scalar multiplication)
(7) $s(t \vec{x})=(s t) \vec{x} \quad$ (scalar multiplication is associative)
(8) $(s+t) \vec{x}=s \vec{x}+t \vec{x}$ (a distributive law)
(9) $t(\vec{x}+\vec{y})=t \vec{x}+t \vec{y} \quad$ (another distributive law)
(10) $1 \vec{x}=\vec{x}$ (scalar multiplicative identity)

Properties of addition, scalar multiplication

Lines in \mathbb{R}^{n}
The set of vectors of the form

$$
\vec{X}=t\left[\begin{array}{l}
1 \\
2
\end{array}\right], t \in \mathbb{R}
$$

describes a line through the origin that moves in the same direction as $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.

What about the set of vectors of the form

$$
\vec{x}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad t \in \mathbb{R}
$$

This new line passes through $(-1,1)$, but still moves in the same direction as $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. (i.e, it is parallel to $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.)

We could have also described each
 coordinate separately:

$$
\begin{gathered}
\vec{X}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+t\left[\begin{array}{l}
1 \\
2
\end{array}\right], t \in \mathbb{R} \\
\Downarrow \\
\left\{\begin{array}{l}
x_{1}=-1+1 t \\
x_{2}=1+2 t,
\end{array}\right.
\end{gathered}
$$

Definition: Let $\vec{p}=\left[\begin{array}{c}p_{1} \\ \vdots \\ p_{n}\end{array}\right], \vec{d}=\left[\begin{array}{c}d_{1} \\ \vdots \\ d_{n}\end{array}\right]$ be vectors in \mathbb{R}^{n}.
The vector equation of the line passing through P and in the direction of \vec{d} is

$$
\vec{x}=\vec{p}+t \vec{d}, \quad t \in \mathbb{R}
$$

The parametric equation of this line is

$$
\left\{\begin{array}{c}
x_{1}=p_{1}+t d_{1} \\
x_{2}=p_{2}+t d_{2} \\
\vdots \\
x_{n}=p_{n}+t d_{n}
\end{array}, \quad t \in \mathbb{R}\right.
$$

Two lines

$$
\begin{cases}\vec{x}=\vec{p}+t \vec{d}, & t \in \mathbb{R} \\ \vec{y}=\vec{q}+t \vec{e}, & t \in \mathbb{R}\end{cases}
$$

are parallel if \vec{d} is a (non-zero) scalar multiple of \vec{e}.

Ex: Find the vector equation of the line
(a) through $P(1,0)$ and in the direction of $\left[\begin{array}{l}4 \\ 3\end{array}\right]$;
(b) through $P(2,1)$ and parallel to the line $\vec{X}=\left[\begin{array}{l}1 \\ 1\end{array}\right]+t\left[\begin{array}{c}-6 \\ 2\end{array}\right], \quad t \in \mathbb{R}$;
(c) through $P(0,3)$ and $Q(3,2)$.

Solution:
(a) $\vec{p}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\vec{d}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$, so $\vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]+t\left[\begin{array}{l}4 \\ 3\end{array}\right], \quad t \in \mathbb{R}$.
(b) Here, $\vec{p}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Since our line is parallel to

$$
\vec{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-6 \\
2
\end{array}\right], \quad t \in \mathbb{R}
$$

$\vec{d}=$ any non-zero multiple of $\left[\begin{array}{c}-6 \\ 2\end{array}\right]$ Let's pick $\vec{d}=\left[\begin{array}{c}-6 \\ 2\end{array}\right]$
Our line is

$$
\vec{x}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-6 \\
2
\end{array}\right], \quad t \in \mathbb{R}
$$

(c) What's the direction vector? It's the line segment from $P(0,3)$ to $Q(3,2)$:

Sound familiar?

It's exactly

$$
\vec{d}=\overrightarrow{P Q}=\vec{q}-\vec{p}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1
\end{array}\right]
$$

(note: $\vec{d}=\overrightarrow{Q P}$ also works!)

We can use either P or Q as a point on the line.

One equation:

$$
\vec{x}=\left[\begin{array}{l}
0 \\
3
\end{array}\right]+t\left[\begin{array}{c}
3 \\
-1
\end{array}\right], \quad t \in \mathbb{R} .
$$

Exercise: Are any of the lines from parts (a)-(c) above parallel to each other?

Explain.

Ex: Determine vector and parametric equations for the line through $P(4,0,1)$ and $Q(1,1,0)$ in \mathbb{R}^{3}.

Solution: Let's start with the vector equation:
Direction vector \vec{d} moves from $P(4,0,1)$ to $Q(1,1,0)$, so

$$
\vec{d}=\overrightarrow{P Q}=\vec{q}-\vec{p}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
-1
\end{array}\right]
$$

We may use either P or Q as a point on the line.
One equation: $\quad \vec{x}=\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]+t\left[\begin{array}{c}-3 \\ 1 \\ -1\end{array}\right], t \in \mathbb{R}$

Write $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ to get the parametric equation:

$$
\begin{aligned}
\vec{x}=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
1 \\
-1
\end{array}\right] & \Longrightarrow\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
1 \\
-1
\end{array}\right] \\
& \Rightarrow\left\{\begin{array}{l}
x_{1}=4-3 t \\
x_{2}=t, t, \\
x_{3}=1-t
\end{array}\right.
\end{aligned}
$$

