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Zachary J. Cramer

1 Introduction

An operator T in a C∗-algebra A is called nilpotent if there exists a positive integer k such that
T k = 0. It has been of significant interest to mathematicians, especially over the past half century,
to determine the norm closure of nilpotent operators in a C∗-algebra. The collective effort of several
renowned mathematicians over multiples years led to a characterization of this closure in the setting
of bounded linear operators acting on a complex, separable, infinite-dimensional Hilbert space in
1974 [1]. This characterization will be presented in Section 2, along with some of the fundamental
results and techniques that were developed in the process.

In recent years, P. Skoufranis [22] demonstrated that similar necessary and sufficient conditions
may be obtained to determine whether a normal operator belongs to the closure of nilpotents in a
unital, simple, purely infinite C∗-algebra. These algebras are examined thoroughly in Section 3, and
in particular, we shall see that the success observed by Skoufranis in this setting is due to the sheer
abundance of projections that purely infinite C∗-algebras contain. A detailed analysis of Skoufranis’
findings is presented in Section 4. One may hope that these results extend to general C∗-algebras,
but as we demonstrate in Section 5, many obstructions arise when working in a C∗-algebra that
possesses a faithful tracial state.

The latter half of this paper will showcase some of the recent results of P. Skoufranis [20] on
unitary and similarity orbits of normal operators in unital, simple, purely infinite C∗-algebras. As is
outlined in Section 6, Skoufranis constructed an operator theoretic proof of a result due to Dadarlat
[5] which provides necessary conditions for two normal operators to be approximately unitarily
equivalent. These results see application in Section 7, wherein we expose Skoufranis’ approach to
obtaining important bounds on the distance between unitary orbits of normal operators.

Finally, we shall bridge the gap between the approximation results of Section 4 and our dis-
cussion of normal operator unitary orbits in Sections 6 & 7. Since the normal limits of nilpotent
operators in a unital, simple, purely infinite C∗-algebra are known, it becomes interesting to know
what non-normal elements are also limits of nilpotents in these algebras. Of course, if an operator
is a limit of nilpotents, then so too is any element within the closure of the similarity orbit of
that operator, and hence it is tempting to ask which non-normal operators make up the closures
of these orbits. Although the answer to this question is not currently known, using information on
the distance between normal operator unitary orbits given in Section 7, Skoufranis ([20]) derived
necessary and sufficient conditions for a normal operator to lie within the closed similarity orbit of
a given normal element. A statement of this result is presented in Section 8, along with a detailed
look at the approach taken by Skoufranis.
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2 Approximation by Nilpotents in B(H)
In 1970, P. R. Halmos published an influential article titled Ten Problems in Hilbert Space [10],
which outlined some of the most important open problems facing operator theorists at that time.
The seventh of these problems asked whether every quasinilpotent operator (that is, an operator
whose spectrum is {0}) acting on a complex, separable, infinite-dimensional Hilbert space is a
norm limit of nilpotent operators. Although not an answer to Halmos’ problem, an example
due to Kakutani showed that there exist non-quasinilpotent operators that are the norm limits
of nilpotents. Thus, Halmos reposed his question in the following way: “What is the closure of
nilpotent operators on a complex, separable, infinite-dimensional Hilbert space? In particular, does
this closure contain all quasinilpotent operators?”

Many esteemed mathematicians approached this problem over the next several years, but it
was in 1973 that Herrero [11] made a fundamental advancement. Namely, he proved that a normal
operator is a norm limit of nilpotent operators if and only if its spectrum is connected and contains
0. Herrero’s contribution was a major step in the characterization of the closure of nilpotents by
Apostol, Foiaş, and Voiculescu [1] in 1974, which provided a solution to Halmos’ revised question.

It is the goal of this section to highlight some of the key ingredients used in obtaining the solution
to Halmos’ seventh problem. An investigation of Berg’s technique (a method for intertwining
two forward weighted shifts) and its consequences in Section 2.1 will allow us to outline a short
proof Herrero’s theorem in Section 2.2. Following this exposition, Section 2.3 will examine some
characterization theorems for the closure of nilpotent operators in certain C∗-algebras (including
the previously mentioned result of Apostol, Foiaş, and Voiculescu), and provide motivation for new
directions in which we may extend these results.

2.1 Berg’s Technique

Berg’s technique is a method for intertwining two forward weighted shifts without greatly dis-
rupting the norm. The idea is to introduce a small twist that executes this intertwining over a
certain number of steps. This twist works by applying subtle rotations on orthogonally acting
components of each shift. Since these components are orthogonal to one another, the effects of the
perturbations are not compounded, but rather the overall difference in norm is given by the maxi-
mum of the individual changes. Figure 1. depicts this situation, where the diagonal lines represent
the effects of the twist operator, and the vertices represent the bases {ej} and {fj} described below.

Figure 1: Berg’s Technique

As we shall see, the total change in norm decreases as the interval over which the twist occurs
increases. A formal statement of this result is presented in the following theorem.

Theorem 2.1.1 (Berg’s Technique [3]). Let {ej , fj : j = 0, . . . ,m} be an orthonormal family in a
Hilbert space H. Let T : H → H be a linear map satisfying

Tej = ej+1 , and Tfj = fj+1

2
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for every j ∈ {0, . . . ,m− 1}. Then there exists S ∈ B(H) such that

(1) Sx = Tx for all x ∈ {ei, fj : j = 0, . . . ,m− 1}⊥,

(2) S(span{ej , fj}) = span{ej+1, fj+1} for all j ∈ {0, . . . ,m− 1},

(3) S is an isometry on span{ej , fj} for all j ∈ {0, . . . ,m− 1},

(4) Sme0 = fm, Smf0 = em, and

(5) ‖S − T‖ < π/m.

Proof. For each j ∈ {0, . . . ,m}, let Mj := span{ej , fj}. Note that for each j ∈ {0, . . . ,m− 1}, the
operator T �Mj

is a unitary Uj taking Mj onto Mj+1, and in the given bases,

Uj =

[
1 0
0 1

]
.

Define the operator

θ :=

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
1 0

0 eiπ/m

] [
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]
and note that

• θ is unitary,

• ‖θ − I‖ = |eiπ/m − 1| < π/m, and

• θm =

[
0 1
1 0

]
.

We are now prepared to define the operator S. If x ∈ {ej , fj : 0 ≤ j ≤ m − 1}⊥, then define
Sx := Tx so that condition (1) is satisfied. For each j ∈ {0, . . . ,m− 1}, define S to be the unitary
θUj from Mj onto Mj+1 and extend S linearly to all of H. In this way, it is immediate that
conditions (2) and (3) are satisfied by S. Notice also that Sm takes M0 onto Mm via the matrix
θm. From the description of θm given above, it is evident that Sme0 = fm and Smf0 = em, and
thus S satisfies condition (4). Finally, observe that the restriction of S − T to M0 ⊕ · · · ⊕Mm is
represented by the matrix 

0
(θ − I) 0

. . .
. . .

(θ − I) 0


in the given bases. Since S and T agree on {ej , fj : 0 ≤ j ≤ m− 1}⊥, it follows that

‖S − T‖ = ‖θ − I‖ < π/m,

and condition (5) is satisfied.
�
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2.2 Herrero’s Theorem

A fundamental breakthrough in solving Halmos’ seventh problem was seen in the following result
due to Herrero, which characterizes which normal operators in B(H) are norm limits of nilpotent
operators. We will use the notation Nil(A) and QNil(A) to describe the nilpotent elements and
quasinilpotent elements in a C∗-algebra A, respectively.

Theorem 2.2.1 (Herrero [11]). Let H be a complex, separable, infinite-dimensional Hilbert space,
and let N be a normal element in B(H). Then N ∈ Nil(B(H)) if and only if σ(N) is connected and
contains 0.

Note that the necessity of these conditions can be seen as a quick consequence of the upper
semicontinuity of the spectrum. Although the original proof that demonstrates the sufficiency of
such conditions is somewhat technical, a more recent argument (also due to Herrero) has been
constructed as an application of Berg’s technique. In particular, Berg’s technique can be used to
demonstrate the existence of a sequence of normal operators in B(H) whose distance to the set of
nilpotents tends to 0, and whose spectra are asymptotically dense in the closed unit disk, D. This
fact is reproduced below and is based on the proof presented in [21].

Lemma 2.2.2. Let m,n ∈ N with m ≥ 2. Then there exists a nilpotent matrix M ∈M2(m+1)n+1(C)
and and normal matrix N ∈M2(m+1)n+1(C) such that

(1) ‖M −N‖ ≤ π
n + 1

m , and

(2) σ(N) =
{
k
me

iπ
n
j : j = 1, . . . , 2n ; k = 0, . . . ,m

}
, where the multiplicity of the zero eigenvalue

is n+ 1, and the multiplicity of every other eigenvalue is 1.

Proof. We begin by defining the nilpotent matrix M ∈ M2(m+1)n+1 to be a particular forward
weighted shift. For each k ∈ {0, . . . ,m}, define ak := k/m, and let

{ek : k = 0, . . . , (2m+ 1)n}

denote the standard orthonormal basis for C(2m+1)n+1. We then define M on C(2m+1)n+1 by setting

• M(ekn+j) = ak+1ekn+j+1 for all k ∈ {0, 1, . . . ,m− 1} and j ∈ {0, . . . , n− 1},

• M(emn+j) = amemn+j+1 for all j ∈ {0, . . . , n− 1},

• M(ekn+j) = a2m+1−kekn+j+1 for all k ∈ {m+ 1, . . . , 2m} and j ∈ {0, . . . , n− 1},

• Me(2m+1)n = 0,

and extending by linearity. If, for each k ∈ {0, . . . , 2m− 1}, we define

Bk := {enk+j : j = 0, . . . , n− 1},

and Hk := span(Bk), then the weight sequence of M can be represented by the diagram in Figure 2.
The basis vectors are represented along the x-axis, and their corresponding weights on the y-axis.
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e(2m+1)n

0 = a0

a1

a2

1 = am

am−1

...

...

B0 B1 Bm−2 Bm−1 Bm Bm+1 Bm+2 B2m−2 B2m−1. . . . . .

Figure 2: Nilpotent Forward Weighted Shift - M

Let H be any Hilbert space with orthonormal basis given by {f1, . . . , f2n}. Define the operator
U2n on H to be the cycle with weights 1, so

U2n =


0 1
1 0

. . .
. . .

1 0


2n×2n

.

in the given basis. We note at this point that U2n is a unitary operator with spectrum given by
the (2n)th-roots of unity, each with multiplicity 1. As we will see, we can approximate M with a
certain direct sum of multiples of U2n via Berg’s technique.

Let Km−1,m+1 := Hm−1⊕Hm⊕Hm+1. By applying Berg’s technique on {enm−n, . . . , enm} and
{enm+n, . . . , enm+2n}, we obtain a matrix S1 ∈M(2m+1)n+1(C) such that

• S1x = Mx for all x ∈ (Hm−1 ⊕Hm+1)⊥,

• S1(span{enm−n+j , enm+n+j}) = span{enm−n+j+1, enm+n+j+1} for all j ∈ {0, . . . , n− 1},

• S1 is an isometry on span{enm−n, . . . , enm−1, enm+n, . . . , enm+2n−1},

• Sn1 (enm−n) = enm+2n and Sn1 (enm+n) = enm, and

• ‖S1 −M‖ < π
n .

It is then clear that K′m−1,m+1 := span{enm+n, S1enm+n, . . . , S
n−1
1 enm+n} ⊕ Hm is a reducing

subspace for S1, and the restriction of S1 to K′m−1,m+1 is unitarily equivalent to U2n. By letting

K′′m−1,m+1 := Km−1,m+1 	K′m−1,m+1 = span{enm−n, S1enm−n, . . . , S
n−1
1 enm−n},

we see that the restriction of S1 to K′′m−1,m+1 is a forward shift with weights 1, and

S1(enm+2n) = M(enm+2n) = am−1enm+2n+1.

5
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Further, if we let M1 denote the operator S1 with the weights on K′′m−1,m+1 reduced from 1 to
am−1, then

‖M −M1‖ ≤ ‖M − S1‖+ ‖S1 −M1‖ ≤
π

n
+

1

m
,

and with respect to the decomposition K′m−1,m+1 ⊕ (K′m−1,m+1)⊥, we may write M1 = U2n ⊕M ′1,
where M ′ ∈M(2m−1)n+1 is a nilpotent forward weighted shift with weights

a1, a2, . . . , am−2, am−1, am−1, am−1, am−2, . . . , a2, a1

corresponding to segments of length n. That is, M ′ decomposes as a 2n× 2n loop with weights 1,
and a nilpotent forward weighted shift that is of a form similar to that of the operator in Figure 2,
but with the weights reduced by a factor of 1/m on one of the n-blocks.

For our next step, we define Km−2,m+2 := Hm−2⊕K′′m−1,m+1⊕Hm+2, and apply Berg’s technique
on {enm−2n, . . . , enm−n} and {enm+2n, . . . , enm+3n}. As in in the previous case, we obtain a matrix
S2 ∈M(2m+1)n+1(C) such that

• S2x = M1x for all x ∈ (Hm−2 ⊕Hm+2)⊥,

• S2(span{enm−2n+j , enm+2n+j}) = span{enm−2n+j+1, enm+2n+j+1} for all j ∈ {0, . . . , n− 1},

• S2 is am−1 times an isometry on span{enm−2n, . . . , enm−n−1, enm+2n, . . . , enm+3n−1},

• Sn2 (enm−2n) = anm−1enm+3n and Sn2 (enm+2n) = anm−1enm−n, and

• ‖S2 −M1‖ < π
n .

It is then clearK′m−2,m+2 := span{enm+2n, S2enm+2n, . . . , S
n−1
2 enm+2n}⊕K′′m−1,m+1 is a reducing

subspace for S2, and the restriction of S2 to K′m−2,m+2 is unitarily equivalent to am−1U2n. Moreover,
S2 is a forward shift with with weights am−1 when restricted to K′′m−2,m+2 := Km−2,m+2	K′m−2,m+2.
Again, we may reduce the weights on K′′ by a factor of 1/m and arrive at a matrix M2 such that
with respect to the decomposition

K′m−1,m+1 ⊕K′m−2,m+2 ⊕ (K′m−1,m+1 ⊕K′m−2,m+2)⊥,

M2 has the form U2n⊕ am−1U2n⊕M ′2, where M ′2 is the (n+ 1)× (n+ 1) zero matrix if m = 2, and
M ′2 ∈M(2m−3)n+1(C) is a nilpotent forward weighted shift with weights

a1, a2, . . . , am−3, am−2, am−2, am−2, am−3, . . . , a2, a1

corresponding to segments of length n, otherwise. At this point we note that M1 was obtained from
M by only its values of K′′m−1,m+1, and M2 was obtained from M1 by perturbing only its values on

K′′m−2,m+2. Since these two spaces are orthogonal, and ‖M1 −M2‖ ≤ π
n + 1

m , it follows that

‖M −M2‖ ≤ max{‖M −M1‖, ‖M1 −M2‖} ≤
π

n
+

1

m
.

This process may now be repeated a finite number of times to arrive at an operator N that is
unitarily equivalent to

U2n ⊕ am−1U2n ⊕ · · · ⊕ a1U2n ⊕ 0(n+1)×(n+1).

Hence, N is a normal operator and our knowledge of the spectrum of U2n implies that σ(N) is
as advertised. Finally, the above construction implies that ‖N −M‖ ≤ π

n + 1
m , and the proof is

complete.
�
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Figure 3. provides a visual representation of the spectrum of the normal operator from Lemma
2.2.2 for different values of m and n. As claimed, we see that the spectrum of this operator “fills
out” D as m and n become large.

Re
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Figure 3: σ(N) where m = 2, n = 3 (left) and m = 5, n = 5 (right)

Lemma 2.2.2 now allows one to prove the following special case of Theorem 2.2.1:

Theorem 2.2.3. Let H be a complex, separable, infinite-dimensional Hilbert space. If D is a
normal operator in B(H) and σ(D) = D, then D ∈ Nil(B(H)).

Proof. Let ε > 0 and let D = {di}∞i=1 be a countable dense subset of D. For each k ∈ N, let Nk

and Mk denote the normal operator and nilpotent operator from Lemma 2.2.2, respectively, with
m = n = k. Choose n large enough so that U := {Bε(λ) : λ ∈ σ(Nn)} forms an open cover of D,
and such that 5/n < ε. Let N

(∞)
n and M

(∞)
n denote the direct sums of infinitely many copies of Nn

and Mn, respectively, so that

• σ
(
N

(∞)
n

)
= σ(Nn), now with every element possessing infinite multiplicity,

• N (∞)
n is normal,

• M (∞)
n is nilpotent, and

• ‖N (∞)
n −M (∞)

n ‖ = ‖Nn −Mn‖ < 5/n < ε.

As a normal matrix of finite dimension, each Nn is diagonalizable. It follows that N
(∞)
n is also

diagonalizable, and hence we may choose an orthonormal basis {ei}∞i=1 of H so that

N (∞)
n =

∞⊕
i=1

diag(λ1, . . . , λk),

where λ1, . . . , λk are the distinct elements from σ(Nn). Since U is an open cover for D, we may
associate to each element di ∈ D a member λ(i) ∈ σ(Nn) so that di ∈ Bε(λ(i)). Further, we may
assume that each λ ∈ σ(Nn) occurs as a λ(i) for infinitely many values of i, as each Bε(λ) contains
infinitely many elements of D.

7
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Define the operator D′ : H → H by

D′ei = diei,

and note that, by applying a basis permutation if necessary, we may assume that

N (∞)
n =


λ(1)

λ(2)
λ(3)

. . .

 ,
and hence ‖N (∞)

n −D′‖ < ε. Moreover, D′ is diagonal and hence normal, and σ(D′) = D = σ(D),
by construction. That being said, the Weyl–von Neumann–Berg Theorem (see [9, Corollary II.4.2])
implies that D′ is approximately unitarily equivalent to D. That is, there is a sequence {Um}∞m=1

of unitaries such that
lim
m→∞

‖UmD′U∗m −D‖ = 0.

Choosing m′ ∈ N large enough so that ‖UmD′U∗m − D‖ < ε whenever m ≥ m′, it quickly follows
that

‖D − UmM (∞)
n U∗m‖ = ‖D − UmD′U∗m‖+ ‖D′ −N (∞)

n ‖+ ‖N (∞)
n −M (∞)

n ‖ < 3ε

for all m ≥ m′. Since UmM
(∞)
n U∗m is nilpotent for every m ∈ N, we conclude that D ∈ Nil(B(H)),

and the proof is complete.
�

We now examine a simple but important fact that will be useful in proving Herrero’s theorem.
This result will also be applied heavily throughout Sections 4, 6, and 7. Here we shall introduce
the notation Nor(A) to denote the set of normal elements in a C∗-algebra A.

Lemma 2.2.4. Let A be a C∗-algebra, N ∈ Nor(A), and (Nn)n≥1 be a sequence of normal operators
in A whose limit is N . If U ⊆ C is open and σ(N) ∩ U 6= ∅, then there exists k ∈ N such that
σ(Nn) ∩ U 6= ∅ whenever n ≥ k.

Proof. Suppose that σ(Nn) ∩ U = ∅ for infinitely many values of n, and let λ ∈ σ(N) ∩ U . By
Urysohn’s lemma, there exists a continuous function f on C such that f(λ) = 1 and f is identically
0 when restricted to C \U . Further, for all n ∈ N with σ(Nn)∩U = ∅, we have that f(Nn) = 0 by
choice of f . Since this occurs for infinitely many values of n and

f(Nn)→ f(N),

it follows that f(N) = 0. This cannot be the case, however, as λ ∈ σ(N) and f(λ) = 1.
�

With these results in hand we are but a stone’s throw from Herrero’s theorem. Note that if
p is a polynomial that vanishes at 0, then p(N) is a norm limit of nilpotents operators in B(H)
whenever N is. It is then straightforward to verify that for such N , f(N) ∈ Nil(B(H)) whenever f
is a function that is analytic on σ(N), and f(0) = 0. The remainder of the proof will proceed as
follows.

8
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Proof of Theorem 2.2.1. Let N ∈ B(H) be such that σ(N) is connected and contains 0, and let
ε > 0. One may find a simply connected open set U that contains σ(N) and satisfies

dist(z, σ(N)) ≤ ε

for all z ∈ U . If we let D1+ε denote the open disk in C with center 0 and radius 1 + ε, then by the
Riemann mapping theorem we obtain an analytic bijection

f : D1+ε → U.

It is evident that we may compose f with a Möbius transformation if necessary and assume that
f(0) = 0.

Note that since f is continuous and σ(N) is compact, f−1(N) defines a compact subset of
D1+ε. Hence, there exists r < 1 + ε such that f−1(U) ⊆ Dr. Let N ′ be any normal operator
in B(H) with spectrum equal to Dr, and note that N ′ ∈ Nil(B(H)). To see this, simply observe
that r−1N ′ ∈ Nil(B(H)) by Theorem 2.2.3, and hence N ′ ∈ Nil(B(H)) as well. It follows from the
remarks preceding this proof that f(N ′) is a normal element of B(H) contained in Nil(B(H)), and

σ(f(N ′)) = f(σ(N ′)) = f(Dr) ⊇ f
(
f−1(σ(N))

)
= σ(N).

Moreover, it is clear that f(σ(N ′)) ⊆ U , and hence σ(N) ⊆ σ(f(N ′)) ⊆ U. Let χσ(N) denote the
characteristic function on σ(N), and define

N ′′ := χσ(N)(f(N ′))f(N ′).

We notice that N ′′ is a normal operator in B(H) with σ(N ′′) = σ(N), and ‖N ′′ − f(N ′)‖ ≤ ε.
Further, since f(N ′) is a norm limit of nilpotent operators, it is clear that

dist(N ′′,Nil(B(H))) ≤ ‖N ′′ − f(N ′)‖+ dist(f(N ′),Nil(B(H))) ≤ ε.

As ε > 0 was arbitrary, we may construct a sequence of normal operators (Mn)n≥1 in B(H) with
σ(Mn) = σ(N) for every n ∈ N, and such that limn→∞ dist(Mn,Nil(B(H))) = 0. If we let M denote
the limit of this sequence, then M is a normal element of B(H) that is a norm limit of nilpotent
operators, and σ(M) = σ(N) by the upper semicontinuity of the spectrum and Lemma 2.2.4.
The Weyl–von Neumann–Berg Theorem now implies that M and N are approximately unitarily
equivalent, and hence N ∈ Nil(B(H)), as desired.

�

2.3 Characterization of Nil(B(H)) and Nil(Q(H))

Recall that for a Hilbert space H, the Calkin algebra is defined as Q(H) := B(H)/K(H), where
K(H) is the closed ideal of B(H) consisting of all compact operators. Further, if π : B(H)→ Q(H)
is the canonical quotient map, then the essential spectrum of an operator T ∈ B(H) is defined
to be σ(π(T )) and is denoted by σe(T ). An operator T ∈ B(H) is called semi-Fredholm if it has
closed range and at least one of kerT or kerT ∗ is finite-dimensional. We let

ρsF (T ) := {λ ∈ C : T − λI is semi-Fredholm},

and if T is semi-Fredholm, we define the semi-Fredholm index of T by

ind(T ) := dim kerT − dim kerT ∗ ∈ Z ∪ {±∞}.

The following characterization of Nil(B(H)) for a complex, separable, infinite-dimensional Hilbert
space H was proven by Apostol, Foiaş, and Voiculescu in 1974. We shall simply state this result,
but direct the reader to either [1] or [12] for a proof.
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Theorem 2.3.1 (Apostol, Foiaş, Voiculescu [1]). Let H be a complex, separable, infinite-dimensional
Hilbert space. An operator T ∈ B(H) belongs to Nil(B(H)) if and only if

(1) σ(T ) is connected and contains 0,

(2) σe(T ) is connected and contains 0, and

(3) ind(T − λI) = 0 for all λ ∈ ρsF (T ).

As a consequence, the following corollary (the proof of which is trivial by Theorem 2.3.1)
provides an affirmative answer to Halmos’ original question:

Corollary 2.3.2. If H is a complex, separable, infinite-dimensional Hilbert space, then

QNil(B(H)) ⊆ Nil(B(H)).

One may now ask whether these characterizations extend to other types of C∗-algebras. While
no characterization of the closure of the nilpotents exists for a general C∗-algebra, some advance-
ments have been made in special cases. We begin with a simple observation regarding abelian
C∗-algebras.

Proposition 2.3.3. If A is a commutative C∗-algebra, then QNil(A) = {0}.

Proof. This result is trivial by the Gelfand–Naimark theorem, which states that if A ∈ A, then σ(A)
is simply the image of Â in the unital case, and the image of Â together with {0} in the non-unital
case. Since the Gelfand transform is injective, we have that A = 0 whenever σ(A) = {0}.

�

More interesting is the case of the Calkin algebra. This result is summarized below, and a proof
may be found in [12, Theorem 5.34].

Theorem 2.3.4. Let H be a complex, separable, infinite-dimensional Hilbert space, and let T be
an operator in B(H). Then π(T ) ∈ Nil(Q(H)) is and only if

(1) σe(T ) is connected and contains 0, and

(2) ind(T − λI) = 0 for all λ ∈ ρsF (T ).

As we will see in the next section, the Calkin algebra is an example of a more general class of
C∗-algebras, known as purely infinite C∗-algebras. It is then natural to ask whether the results of
this section extend to other C∗-algebras with this property.

10
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3 Purely Infinite C∗-Algebras

Having obtained a characterization of Nil(B(H)) from Section 2, one may ask if analogous results
exist for other classes of C∗-algebras. Indeed, as we shall see in the coming sections, simple C∗-
algebras that are so-called purely infinite enjoy many similar characterization results. We will
observe that such characterizations can be achieved because of the abundance of projections these
algebras contain.

It is necessary to obtain a firm understanding of purely infinite C∗-algebras before moving to
approximation theory, and hence the goal of this section is to build the foundations required to
extend the results of Section 2. As these algebras are defined by their hereditary C∗-subalgebras,
Section 3.1 outlines a thorough examination of such objects based largely on the exposition in [14].
This leads us to Section 3.2, wherein we explore the structure of purely infinite C∗-algebras via an
analysis of the projections within them. In particular, a useful algebraic characterization of such
algebras is presented in Theorem 3.2.11, which can be used to show that the Calkin algebra is
purely infinite. Finally, Section 3.3 demonstrates that simple, purely infinite C∗-algebras have real
rank zero. The consequences of this fact play a key role in the sections to come.

3.1 Hereditary C∗-Subalgebras

Definition 3.1.1. Let A be a C∗-algebra and B be a C∗-subalgebra of A. We say B is hereditary
if whenever A ∈ A and B ∈ B with 0 ≤ A ≤ B, we have A ∈ B.

The purpose of this section is to obtain an understanding of the structure of hereditary C∗-
subalgebras, and explore some important examples. As we shall see, such objects inherit many
enjoyable properties from the parent C∗-algebra (see Corollary 3.1.8 for one such result.) First, we
show that the following important classes of C∗-subalgebras are hereditary.

Proposition 3.1.2. Let A be a C∗-algebra and P be a projection in A. Then the C∗-subalgebra
PAP is hereditary. Such a C∗-subalgebra is called a corner of A.

Proof. Let A ∈ A and B ∈ A be such that 0 ≤ A ≤ PBP . By passing to the unitization of A, we
see that

0 ≤ (I − P )A(I − P ) ≤ (I − P )PBP (I − P ) = 0,

and so (I − P )A(I − P ) = 0. The C∗-identity now implies that

‖A1/2(I − P )‖2 = ‖(I − P )A(I − P )‖ = 0,

and hence A1/2(I − P ) = 0. Thus, A(I − P ) = 0 = (I − P )A, and we may deduce that

A = PAP ∈ PAP.

This proves that PAP is hereditary, as claimed.
�

Proposition 3.1.3. Let A be a C∗-algebra and A ∈ Asa. Then B := AAA is a hereditary C∗-
subalgebra of A containing A.

Proof. It is clear that B is a C∗-subalgebra of A. Before proving that B is hereditary, we first
claim that if X ∈ B+ := {B ∈ B : B ≥ 0}, then XAX ⊆ B. Indeed, if X = limnAXnA ∈ B and
Y ∈ A, then

XYX = lim
n→∞

(AXnA)Y (AXnA) ∈ B.

11
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This proves that XAX ⊆ B, and since B is closed, the proof of the claim is complete. Now to see
heredity, suppose that C ∈ A and B ∈ B are such that 0 ≤ C ≤ B. If (eλ)λ∈Λ is an approximate
unit for B, then an application of the C∗-identity demonstrates that for each λ,

‖C1/2 − C1/2eλ‖2 = ‖(I − eλ)C(I − eλ)‖
≤ ‖(I − eλ)B(I − eλ)‖
= ‖B1/2 −B1/2eλ‖2.

Note that (I − eλ)C(I − eλ) is simply a shorthand for the corresponding element of A, as we have
not assumed that the C∗-algebra in question is unital. Since the sequence {‖B1/2 − B1/2eλ‖}λ∈Λ

converges to 0, it follows that
C1/2 = lim

λ
C1/2eλ,

and hence eλCeλ → C. As eλ ∈ B+, the above claim shows that eλCeλ ∈ B, and thus C ∈ B.
This proves that B is indeed hereditary.

Now let (uγ)γ∈Γ be an approximate unit for A. To see that A belongs to B , note that

A2 = lim
γ

(AuγA) ∈ B

as AuγA ∈ AAA for all γ. It is then immediate that A = (A2)1/2 ∈ B.
�

The following useful result describes an important correspondence between hereditary C∗-
subalgebras and closed left ideals.

Theorem 3.1.4. Let A be a C∗-algebra.

(1) If L is closed left ideal in A, then L ∩ L∗ is a hereditary C∗-subalgebra of A.

(2) If L1,L2 are closed left ideal of A, then L1 ⊆ L2 if and only if L1 ∩ L∗1 ⊆ L2 ∩ L∗2.

(3) If B is a hereditary C∗-subalgebra of A, then

L := {A ∈ A : A∗A ∈ B}

defines a left ideal of A and B = L ∩ L∗.

Hence, the map L 7→ L ∩ L∗ defines an inclusion preserving bijection between the left ideals of A
and the hereditary C∗-subalgebras of A.

Proof. (1) It is routine to verify that B := L∩L∗ is a C∗-subalgebra of A whenever L is a closed
left ideal of A. To verify that B is hereditary, let A ∈ A and B ∈ B be such that 0 ≤ A ≤ B.
Let (eλ)λ∈Λ be an approximate unit for B. We have that

0 ≤ (I − eλ)A(1− eλ) ≤ (I − eλ)B(I − eλ),

and hence the C∗-identity gives

‖A1/2 −A1/2eλ‖2 = ‖(I − eλ)A(I − eλ)‖
≤ ‖(I − eλ)B(I − eλ)‖
= ‖B1/2 −B1/2eλ‖2.

Since the final term tends to 0, the above shows that A1/2 = limλA
1/2eλ, and since each eλ

belongs to the left ideal L, it follows that so too does A1/2. This proves that A1/2 (and hence
A) is an element of B, and so B is indeed hereditary.

12
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(2) Suppose that L1 and L2 are closed left ideals of A. It is obvious that L1 ∩ L∗1 ⊆ L2 ∩ L∗2
whenever L1 ⊆ L2. To see the converse, suppose that L1 ∩ L∗1 ⊆ L2 ∩ L∗2 and let A ∈ L1.
Once again, let (eλ)λ∈Λ be an approximate unit for L1 ∩ L∗1, and note that since A∗A ∈ L1,
we obtain

lim
λ
‖A−Aeλ‖2 = lim

λ
‖(I − eλ)A∗A(I − eλ)‖ ≤ lim

λ
‖A∗A(I − eλ)‖ = 0.

However, eλ ∈ L1 ∩ L∗1 ⊆ L2, and hence the above implies that A ∈ L2 as well. Therefore,
L1 ⊆ L2.

(3) To see that L is indeed a left ideal of A, let A,B ∈ L and let X ∈ A. Then

(A+B)∗(A+B) ≤ (A+B)∗(A+B) + (A−B)∗(A−B) = 2A∗A+ 2B∗B ∈ B,

and
(XA)∗(XA) = A∗X∗XA ≤ ‖X‖2A∗A ∈ B.

By heredity, (A+B)∗(A+B) and (XA)∗(XA) belong to B, and hence A+B and XA belong
to L. A similar calculation shows that L is closed under scalar multiplication, and thus L is
a left ideal of A. Since B is closed in A, so too is L.

If B ∈ B, then B∗B ∈ B as well, so B ∈ L. Thus, B ⊆ L∩L∗. Conversely, let 0 ≤ B ∈ L. It
is evident that B2 ∈ B, and hence B = (B2)1/2 ∈ B. This shows that L+ = (L∩L∗)+ ⊆ B+,
and since every element of a C∗-algebra can be written as a linear combination of positive
elements, it follows that L ∩ L∗ ⊆ B. Thus, B = L ∩ L∗, as required.

The conclusions of (1), (2), and (3) demonstrate that the map L 7→ L ∩ L∗ is well-defined, it is
an inclusion preserving injection, and it is surjective, respectively. Hence, this map is an inclusion
preserving bijection, as claimed.

�

With the above result in hand, a useful characterization of hereditary C∗-subalgebras is now
readily obtained. The remainder of the section will be devoted to the following theorem and its
several important consequences.

Theorem 3.1.5. Let A be a C∗-algebra and B be a C∗-subalgebra of A. Then B is hereditary if
and only if BAB′ ∈ B for all A ∈ A and all B,B′ ∈ B.

Proof. Suppose first that B is a hereditary C∗-subalgebra of A, let B,B′ ∈ B, and let A ∈ A. By
Theorem 3.1.4, there exists a left ideal L of A such that B = L ∩ L∗. Since B′, B∗ ∈ L, we have
that (BA)B′ ∈ L and (B′∗A∗)B∗ ∈ L, and hence BAB′ ∈ L ∩ L∗ = B.

Now suppose B is a C∗-subalgebra of A satisfying above property. Let A ∈ A and B ∈ B be
such that 0 ≤ A ≤ B. If (eλ)λ∈Λ is an approximate unit for B, we have that for all λ,

0 ≤ (I − eλ)A(I − eλ) ≤ (I − eλ)B(I − eλ),

and hence the C∗-identity implies (in the same way as before) that A1/2 = limλA
1/2eλ. This, in

turn, shows that
A = (A1/2)∗A1/2 = lim

λ
(A1/2eλ)∗(A1/2eλ) = lim

λ
eλAeλ.

Since eλAeλ ∈ B for all λ ∈ Λ by assumption, we conclude that A ∈ B, and hence B is hereditary.
�
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Theorem 3.1.5 is useful in proving the heredity of many C∗-subalgebras. In particular, if J is
a closed ideal of a C∗-algebra A, then clearly we have that JAJ ⊆ J , and hence the following
corollary is immediate. First recall that if I1, . . . , In are ideals in a C∗-algebra A, then we define
I1 · · · In to be the closed linear span of all products A1 · · ·An, where Aj ∈ Ij for each j ∈ {1, . . . , n}.
Corollary 3.1.6. Every closed ideal of a C∗-algebra is a hereditary C∗-subalgebra.

One interesting property of hereditary C∗-subalgebras is their ability to preserve the simplicity
of the C∗-algebra to which they belong. In order to prove this useful result, we must examine
the connection between closed ideals of a C∗-algebra and the closed ideals of its hereditary C∗-
subalgebras.

Theorem 3.1.7. Let A be a C∗-algebra and B be a hereditary C∗-subalgebra of A. If J is a closed
ideal of B, then there is a closed ideal I of A such that J = B ∩ I.

Proof. Let I := AJA and note that I is a closed ideal of A. We claim that

• J = J 3 and

• B ∩ I = BIB.
To see that the first assertion holds, note that clearly J 3 ⊆ J . Further, if (eλ)λ∈Λ is an approximate
unit for J and X ∈ J , then each eλXeλ ∈ J 3, and since

X = lim
λ
eλXeλ

it follows that X ∈ J 3 as well. For the second claim, note that since I is an ideal of A, it is obvious
that BIB ⊆ I. Also, since

BIB = B(AJA)B ⊆ B(ABA)B = (BAB)B(BAB),

and the heredity of B in A implies that BAB ⊆ B by Theorem 3.1.5, it is easy to see that

BIB ⊆ B3 ⊆ B.

Combining the above observations, we deduce that BIB ⊆ B ∩ I. Finally, if X ∈ B ∩ I and
(uγ)γ∈Γ is an approximate unit for B, then clearly uγXuγ ∈ BIB for all γ, and hence

X = lim
γ
uγXuγ

must also belong to BIB.
With the above results in mind, we note that

B ∩ I = BIB = B(AJ 3A)B = (BAJ )J (JAB),

and since BAJ and JAB are both contained in B by Theorem 3.1.5, it follows that

B ∩ I ⊆ BJB = J .

We conclude by noting that since J = J 3 ⊆ AJA = I (and of course J ⊆ B), it is clear that
J = B ∩ I and hence the proof is complete.

�

Corollary 3.1.8. Every hereditary C∗-subalgebra of a simple C∗-algebra is simple.

Proof. If B is a hereditary C∗-subalgebra of a simple C∗-algebra A and J is an ideal of B, then
Theorem 3.1.7 indicates that J = B ∩ I for some ideal I of A. By simplicity of A, either I = {0}
or I = A, and hence either J = {0} or J = B. This completes the proof.

�

14



Zachary J. Cramer

3.2 Infinite Projections and Purely Infinite C∗-Algebras

In order to discuss the concept of a purely infinite C∗-algebra, we must first define what it means for
a projection in a C∗-algebra to be infinite. Recall that two projections, P and Q, in a C∗-algebra
A are said to be Murray–von Neumann equivalent (written P ∼0 Q) if there exists a partial
isometry S ∈ A such that P = S∗S and Q = SS∗. In this case, P is called the source projection
of S, and Q is called the range projection of S.

Definition 3.2.1. Let A be a C∗-algebra and P ∈ A be a projection. We say P is

• infinite if P is Murray–von Neumann equivalent to a proper subprojection of itself.

• properly infinite if there are orthogonal projections Q1, Q2 ∈ A such that Q1 ∼0 Q2 ∼0 P ,
and Q1 +Q2 ≤ P.

The C∗-algebra A is called infinite if it contains an infinite projection, and properly infinite if
it contains a properly infinite projection.

Definition 3.2.2. A C∗-algebra A is called purely infinite if every non-zero hereditary C∗-
subalgebra of A contains an infinite projection.

The Calkin algebra, Q(H), where H is a complex, separable, infinite-dimensional Hilbert space
is an example of a purely infinite C∗-algebra, as it satisfies a certain algebraic characterization of
this property that is outlined in Theorem 3.2.11. Likewise, the Cuntz algebra, On is purely infinite
by the same reasoning [9, Theorem V.4.6]. For now we will examine some familiar C∗-algebras that
are not purely infinite.

Example 3.2.3. If H is a complex, separable, infinite-dimensional Hilbert space, then B(H) is not
purely infinite. To see this, note that K(H) is an ideal of B(H) and hence a hereditary C∗-subalgebra
of B(H) by Corollary 3.1.6 . The fact that B(H) is not purely infinite now follows as K(H) does
not contain infinite projections.

Example 3.2.4. If A is an abelian C∗-algebra then A is not purely infinite. To see this, note that
if P ∈ A is a projection and Q is a projection in A with P ∼0 Q, then there exists a partial isometry
S ∈ A with SS∗ = P and S∗S = Q. Since A is abelian, it is immediate that P = Q, and hence Q
cannot be a proper subprojection of P . Hence, no projection in A is infinite and the result holds.

As a consequence to the above, if X is a compact Hausdorff space, then the space C(X) of
continuous, complex-valued functions on X is never purely infinite.

Some basic properties of purely infinite C∗-algebras are summarized in the following proposition.
These facts lead to an important corollary, which states that every non-zero projection in a purely
infinite C∗-algebra is an infinite projection.

Proposition 3.2.5. Let A be a purely infinite C∗-algebra.

(1) If B is a hereditary C∗-subalgebra of A, then B is also purely infinite.

(2) If P ∈ A is an infinite projection and Q ∈ A is a projection with P ≤ Q, then Q is infinite.

(3) If A is unital, then I is an infinite projection.
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Proof. (1) Let C be a hereditary C∗-subalgebra of B. If we can show that C is also a hereditary
C∗-subalgebra of A, then C will contain an infinite projection (by virtue of A being purely
infinite) and we may deduce that B is purely infinite.

Suppose A ∈ A and C ∈ C are such that 0 ≤ A ≤ C. Since C ∈ C ⊆ B, it follows that
A ∈ B by heredity of B in A. Consequently, the heredity of C in B demonstrates that A ∈ C.
Therefore, C is a hereditary C∗-subalgebra of A, and the above remarks imply that C is purely
infinite.

(2) Let V ∈ A be such that V V ∗ = P and R := V ∗V < P . Since PV R = (V V ∗)V (V ∗V ) = V ,
we see that

V (Q− P ) = PV R(Q− P ) = PV R− PV R = 0,

and
(Q− P )V = (Q− P )PV R = PV R− PV R = 0.

If we define S := V +Q− P , then clearly

SS∗ = (V +Q− P )(V ∗ +Q− P ) = V V ∗ +Q− P = Q,

and
S∗S = (V ∗ +Q− P )(V +Q− P ) = V ∗V +Q− P = R+Q− P =: T

is a proper subprojection of Q. Hence Q ∼0 T < Q, and we conclude that Q is an infinite
projection.

(3) If P is an infinite projection in A, then P ≤ I. The second statement of this proposition now
implies that I is infinite.

�

Corollary 3.2.6. Let A be a purely infinite C∗-algebra. Then every non-zero projection in A is
infinite.

Proof. Let P be a non-zero projection in A. By Propositions 3.1.2 and 3.2.5, it follows that the
corner PAP is a purely infinite C∗-algebra. Further, PAP is unital with identity P . By Proposition
3.2.5, we conclude that P is an infinite projection.

�

One of the main results of this section is Theorem 3.2.8, which states that every infinite projec-
tion in a simple C∗-algebra is properly infinite in a powerful way. This fact is essential in extending
the results of Section 2 to the setting of purely infinite C∗-algebras, and hence will be applied heav-
ily throughout the coming sections. We prove the following lemma before tackling this important
result.

Lemma 3.2.7. Let A be a simple C∗-algebra and Q be a projection in A. If 0 6= P ∈ A+, then
there exist elements Z1, . . . , Zn ∈ A such that Q =

∑n
i=1 Z

∗
i PZi.

Proof. Since P 6= 0 we may assume that ‖P‖ = 1. Since A is simple, we have that 〈P 〉 = A. This
implies that Q ∈ 〈P 〉, and so there exist X1, . . . , Xn, Y1, . . . , Yn ∈ A with ‖Q−

∑n
i=1XiPYi‖ < 1/2.

Notice that since P > 0, P = B∗B for some B ∈ A. Hence

0 ≤ (B(X∗i − Yi))∗(B(X∗i − Yi))
= (Xi − Y ∗i )B∗B(X∗i − Yi)
= XiPX

∗
i −XiPYi − Y ∗i PX∗i + Y ∗i PYi.
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In particular, this implies that

XiPYi + Y ∗i PX
∗
i ≤ XiPX

∗
i + Y ∗i PYi.

Passing to the unitization of A, one sees that

2Q−
n∑
i=1

XiPYi −
n∑
i=1

Y ∗i PX
∗
i ≤

∥∥∥∥2Q−
n∑
i=1

XiPYi −
n∑
i=1

Y ∗i PX
∗
i

∥∥∥∥I
≤

(∥∥∥∥Q− n∑
i=1

XiPYi

∥∥∥∥+

∥∥∥∥
(
Q−

n∑
i=1

XiPYi

)∗ ∥∥∥∥
)
I ≤ I.

By conjugating both sides by Q (and thus returning to A), we see that

2Q−
n∑
i=1

QXiPYiQ−
n∑
i=1

QY ∗i PX
∗
i Q ≤ Q,

and upon rearrangement it follows that

Q ≤
n∑
i=1

QXiPYiQ+

n∑
i=1

QY ∗i PX
∗
i Q ≤

n∑
i=1

QXiPX
∗
i Q+

n∑
i=1

QY ∗i PYiQ =: A ≤ cQ,

where c :=
∑n

i=1(‖Xi‖2 + ‖Yi‖2). With respect to the decomposition QH⊕ (QH)⊥, we may write

A =

[
A1 A2

A3 A4

]
.

Note that since Q ≤ A ≤ cQ, one has[
I 0
0 0

]
≤
[
A1 A2

A3 A4

]
≤
[
cI 0
0 0

]
.

One can now deduce that A2 = A3 = A4 = 0 and σ(A1) ⊆ [1, c], thereby showing σ(A) ⊆ {0}∪[1, c].
Define the function f on σ(A) by

f(x) =

{
0, if x = 0

x−1/2, if x ∈ [1, c]
,

and note that

f(A)Af(A) =

[
f(A1) 0

0 0

] [
A1 0
0 0

] [
f(A1) 0

0 0

]
=

[
A
−1/2
1 A1A

−1/2
1 0

0 0

]
=

[
I 0
0 0

]
= Q.

Since f(A) is self-adjoint, we may conclude that

Q = f(A)

(
n∑
i=1

QXiPX
∗
i Q+

n∑
i=1

QY ∗i PYiQ

)
f(A)

=

n∑
i=1

(X∗i Qf(A))∗P (X∗i Qf(A)) +

n∑
i=1

(YiQf(A))∗P (YiQf(A)),

and the proof is complete.
�
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Theorem 3.2.8. Let A be a simple, infinite C∗-algebra and Q ∈ A be an infinite projection. Then
there exist partial isometries {Tk}∞k=0 ⊆ A with pairwise orthogonal range projections such that

Q = T ∗kTk and
∑N

k=1 TkT
∗
k < Q for all N ≥ 1.

Proof. Let S be a partial isometry in A such that P := SS∗ < S∗S = Q. By working in the corner
B := QAQ, we have that B is a unital hereditary C∗-subalgebra of A with unit given by I = Q.
Since A was assumed to be simple, Corollary 3.1.8 implies that B is simple as well. Moreover,
P = QPQ ∈ B and

S = SS∗S = PS = QPSS∗S = Q(PS)Q ∈ B.

Hence, Q is an infinite projection in B and so we may apply Lemma 3.2.7 to find elements
X1, . . . , Xn ∈ B that satisfy

n∑
i=1

X∗i (I − P )Xi = I,

as I − P 6= 0.

We claim that {Si(I−P ) : i ≥ 1} is a collection of partial isometries, each with initial projection
I − P , and such that (Si(I − P ))∗Sj(I − P ) = 0 whenever i 6= j. Indeed,

(Si(I − P ))∗Si(I − P ) = (I − P )(S∗)iSi(I − P ) = (I − P )I(I − P ) = (I − P ).

Further, when j < i, we have

(Si(I − P ))∗Sj(I − P ) = (I − P )(S∗)iSj(I − P )

= (I − P )Sj−i(I − P )

= (Sj−i − PSj−i)︸ ︷︷ ︸
=0

(I − P ) = 0.

We obtain a similar result for the case when i < j.

Now define T1 :=
∑n

i=1 S
i−1(I − P )Xi and note that

T ∗1 T1 =
∑
i,j

X∗i (I − P )(S∗)i−1Sj−1(I − P )Xj =
∑
i

X∗i (I − P )Xi = I,

so T1 is a partial isometry. For k ≥ 2, we define Tk := Sn(k−1)T1 and note that

T ∗kTk = T ∗1 (S∗)n(k−1)Sn(k−1)T1 = T ∗1 T1 = I.

If ` > k, then `− k ≥ 1, and hence for each i ∈ {1, . . . , n}, we have

αi := n(`− k)− (i− 1) ≥ n(`− k)− (n− 1) = n(`− k − 1) + 1 > 0.

This implies that

T ∗kT` = T ∗1 (S∗)n(k−1)Sn(`−1)T1

=

(
n∑
i=1

X∗i (I − P )(S∗)i−1

)
Sn(`−k)T1

=
n∑
i=1

X∗i (I − P )SαiT1

=
n∑
i=1

X∗i (Sαi − PSαi)︸ ︷︷ ︸
=0

T1 = 0.
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It follows that {TkT ∗k : k ∈ N} is a family of pairwise orthogonal projections with T ∗kTk = I for all

k. All that remains to show is that
∑N

i=1 TkT
∗
k < I for all N ≥ 1.

First notice that

T1T
∗
1

∑
j

Sj−1(I − P )(S∗)j−1

 = T1

(∑
i

X∗i (I − P )(S∗)i−1

)∑
j

Sj−1(I − P )(S∗)j−1


= T1

∑
i,j

X∗i (I − P )(S∗)i−1Sj−1(I − P )(S∗)j−1

= T1

∑
i

X∗i (I − P )(S∗)i−1 = T1T
∗
1 ,

and similarly T1T
∗
1 =

(∑
j S

j−1(I − P )(S∗)j−1
)
T1T

∗
1 . Since T1T

∗
1 ≤ I, it follows that

T1T
∗
1 ≤

∑
i,j

Si−1(I − P )(S∗)i−1Sj−1(I − P )(S∗)j−1

=
∑
i

Si−1(I − P )(S∗)i−1

=
∑
i

Si−1(S∗)i−1 −
∑
i

Si−1P (S∗)i−1

=
∑
i

Si−1(S∗)i−1 −
∑
i

Si(S∗)i = I − Sn(S∗)n.

Thus,

TkT
∗
k = Sn(k−1)T1T

∗
1 (S∗)n(k−1) ≤ Sn(k−1)(I−Sn(S∗)n)(S∗)n(k−1) = Sn(k−1)(S∗)n(k−1)−Snk(S∗)nk,

and we may conclude that for N ≥ 1,

N∑
k=1

TkT
∗
k ≤

N∑
k=1

(Sn(k−1)(S∗)n(k−1) − Snk(S∗)nk) = I − SnN (S∗)nN < I

This completes the proof.
�

Corollary 3.2.9. Every simple, infinite C∗-algebra A is properly infinite.

Proof. Let Q be any infinite projection in A. Simply take N = 2 in Theorem 3.2.8 to obtain two
orthogonal projections, each equivalent to Q, and whose sum is a proper subprojection of Q.

�

The following corollary illustrates yet another interesting property of infinite projections, which
will see an abundance of applications in the approximation results to follow.

Corollary 3.2.10. If P and Q are projections in a simple C∗-algebra, A, and P is infinite, then
Q is equivalent to a subprojection of P .
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Proof. By Lemma 3.2.7, there exist X1, . . . , Xn ∈ A such that Q =
∑n

i=1XiPX
∗
i . Further, an

application of Theorem 3.2.8 yields partial isometries S1, . . . , Sn ∈ A that satisfy P = S∗i Si and∑n
i=1 SiS

∗
i < P . As seen in the proof of Theorem 3.2.8, we may arrange that S∗i Sj = 0 whenever

i 6= j. Define S :=
∑n

i=1XiPS
∗
i and note that since

SS∗ =
∑
i,j

XiPS
∗
i SjPX

∗
j =

∑
i

XiPX
∗
i = Q,

we have that S is a partial isometry with initial projection equivalent to Q. If we can show that
the initial projection of S is a subprojection of P , then the proof will be complete.

For each i ∈ {1, . . . , n}, we have

PSiP = PSiS
∗
i Si = SiS

∗
i Si = SiP,

as SiS
∗
i ≤

∑
i SiS

∗
i < P . Thus,

PS∗S =
∑
i,j

PSiPX
∗
iXjPS

∗
j =

∑
i,j

SiPX
∗
iXjPS

∗
j = S∗S,

and by considering adjoints, we obtain S∗SP = S∗S. This proves that S∗S ≤ P , as desired.
�

We end this subsection by presenting an algebraic characterization for purely infinite C∗-
algebras. This, in particular, will be used to show that the Calkin algebra is purely infinite.
Since the closure of nilpotent operators in this algebra was fully characterized in Theorem 2.3.4,
the fact that Q(H) is a simple, purely infinite C∗-algebra now motivates our ambition for extending
these characterizations to other simple, purely infinite C∗-algebras.

Theorem 3.2.11. Let A be a simple, unital C∗-algebra of dimensional at least 2. The following
are equivalent:

(1) A is purely infinite.

(2) for all non-zero A ∈ A, there exist X,Y ∈ A such that XAY = I.

(3) for all non-zero A ∈ A+ and ε > 0, there exists X ∈ A with ‖X‖ < ‖A‖−1/2 + ε and
XAX∗ = I.

Proof. Firstly, if (3) holds and A ∈ A is non-zero, then A∗A ≥ 0, and by assumption there exists
X ∈ A with XA∗AX = I, from which we obtain (2).

Now assume (2) is true. To show that (1) holds, we will make use of the fact that (3) is satisfied
without the norm estimate. Let A ∈ A+ be non-zero. Applying the assumptions of (2) to A1/2,
there exist X,Y ∈ A with XA1/2Y = I. Hence, we obtain

I = I · I∗ = XA1/2Y Y ∗A1/2X∗ ≤ ‖Y ‖2XAX∗.

This implies that Z := XAX∗ belongs to GL(A+), and hence

(Z−1/2X)A(Z−1/2X)∗ = I.

This is exactly the result of (3) without the norm estimate, as claimed.
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Now let B be a hereditary C∗-subalgebra of A, and let B be a non-zero, non-invertible positive
element of B (which exists by the heredity of B together with the assumption that A has dimension
at least 2). The above analysis implies the existence of an element W ∈ A such that WBW ∗ = I.
Define S := B1/2W ∗ and note that S∗S = WBW ∗ = I. If S were invertible, then we would have

B1/2W ∗WB1/2 = SS∗ = I.

In this case, 0 /∈ σ(B1/2), and hence the spectral mapping theorem implies that 0 /∈ σ(B). This
contradicts the assumption that B is non-invertible, and we thus have that S is a proper isometry.

Define P := SS∗ and notice that

P = B1/2W ∗WB1/2 ≤ ‖W‖2B.

By heredity of B, it follows that P ∈ B. Let us show that this P is indeed an infinite projection.
If we define Q to be the projection SPS∗ then it is clear that Q = SPS∗ ≤ SS∗ = P , as P ≤ I.
Moreover, P = (SP )∗(SP ) and Q = (SP )(SP )∗, so Q ∼0 P . One must only verify that Q is a
proper subprojection of P . Suppose to the contrary that Q = P . Then

S∗PS = S∗QS = S∗(SPS∗)S = (S∗S)Q(S∗S) = Q = SPS∗

from which it follows that S(SS∗S∗) = S∗(SS∗)S = I. This shows that S has a right inverse
(as well as a left inverse as S is an isometry) and therefore S is invertible. This contradiction
demonstrates that Q must indeed be a proper subprojection of P , and we conclude that since B
contains an infinite projection, A is purely infinite. This proves (1).

Finally, suppose that (1) holds. Let A ∈ A+ with ‖A‖ = 1. Let ε ∈ (0, 1/2) and define the
continuous function f on [0, 1] by

f(t) =

{
0, 0 ≤ t ≤ 1− ε
1− ε−1(1− t), 1− ε ≤ t ≤ 1

.

Consider the hereditary C∗-subalgebra B := f(A)Af(A) and note that by assumption, B contains
an infinite projection, P . Lemma 3.2.10 implies that I is equivalent to a subprojection of P , so
there is an isometry S whose range projection satisfies SS∗ ≤ P . Note that P (SS∗) = SS∗, and
hence right multiplication by S yields PS = S. Since σ(A) ⊆ [0, 1], we have that f(A), and hence
every element of B is of the form [

0 0
0 Z

]
with respect to the decomposition EA([0, 1−ε))H⊕EA([1−ε, 1])H, where EA denotes the spectral
measure corresponding to A. In particular, P has the above form where Z = Q is a projection.
With this in mind, one can see that

P =

[
0 0
0 Q

]
≤
[
0 0
0 I

]
= EA([1− ε, 1]) ≤ (1− ε)−1A,

and so it follows that PAP ≥ (1− ε)P . As a result,

B := S∗AS = S∗PAPS ≥ (1− ε)S∗PS = (1− ε)I,

so B ∈ GL(A+), and thus (B−1/2S∗)A(SB−1/2) = I. Finally,

‖SB−1/2‖ ≤ ‖S‖‖B−1/2‖ ≤ (1− ε)−1/2 < 1 + ε

for ε ∈ (0, 1/2). This establishes (3) and the proof is complete.
�
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Corollary 3.2.12. Let H be a complex, separable, infinite-dimensional Hilbert space. The Calkin
algebra Q(H) is purely infinite and simple.

Proof. It is well known that K(H) is the only non-trivial closed ideal of B(H) whenever H is
separable and infinite-dimensional. By correspondence, it is clear that Q(H) is simple.

Let T ∈ B(H) be non-compact. Our goal is to appeal to Theorem 3.2.11 by finding elements
A,B ∈ B(H) such that π(I) = π(A)π(T )π(B), where π : B(H)Q(H) is the canonical quotient map.
With this in mind, we may assume that T ≥ 0 and ‖T‖ = 1 (by replacing T by T ∗T

‖T ∗T‖ if necessary).

There exists a spectral measure ET : Bor(σ(T )) → B(H) such that ET (∆) is a projection for all
Borel sets ∆ on σ(T ), and

T =

∫ 1

0
x dET (x).

Since T /∈ K(H), there exists ε ∈ (0, 1] such that ET ((ε, 1]) is a projection of infinite rank. Define
ι and f on [0, 1] by ι(x) = x and

f(x) =

{
0, 0 ≤ x ≤ ε
1/x, ε < x ≤ 1

,

and note that the map ϕ : L∞Bor(σ(T ))→ B(H) given by ϕ(g) =
∫ 1

0 g(x) dET (x) is a ∗-homomorphism.
Having said this, we observe that by defining S := ϕ(f), we have

TS = ϕ(ι)ϕ(f) = ϕ(ιf) =

∫ 1

0
xf(x) dET (x) =

∫ 1

ε
dET (x) = ET ((ε, 1]).

Hence, by replacing T by TS if necessary, we may assume that T is a projection of infinite rank.
In this case, T is equivalent to I, and so there is a partial isometry U such that U∗U = T and
UU∗ = I. But then I = UU∗UU∗ = UTU∗ and we see that

π(I) = π(U)π(T )π(U)∗.

By Theorem 3.2.11, we deduce that Q(H) is purely infinite.
�

3.3 C∗-Algebras of Real Rank Zero

To sum up Section 3, we will investigate the consequences that arise when considering the real rank
of a unital, simple, purely infinite C∗-algebra. For convenience, we will adopt the notation Asa to
describe the set of self-adjoint elements of a C∗-algebra A.

Definition 3.3.1. Let A be a unital C∗-algebra. We say A has real rank zero if the invertible,
self-adjoint elements of A are dense in Asa.

As the following theorem states, every unital, simple, purely infinite C∗-algebra is of real rank
zero. This fact, combined with Corollary 3.3.5, demonstrates that such C∗-algebras are incredibly
saturated with projections.

Theorem 3.3.2. If A is a unital, simple, purely infinite C∗-algebra, then A has real rank zero.

Proof. Let A ∈ A be self-adjoint and let ε > 0. Define fε : R→ R by

fε(t) =


0, |t| ≤ ε
t− ε, t ≥ ε
t+ ε, t ≤ −ε

,
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and gε(t) = max{ε− |t|, 0}. Let P be an infinite projection in the hereditary C∗-subalgebra

B := gε(A)Agε(A)

of A. An application of Lemma 3.2.10 yields a partial isometry S ∈ A such that S∗S = I − P and
Q := SS∗ is a subprojection of P . If EA denotes the spectral measure corresponding to the element
A, then by examining the matrix representations of P and fε(A) associated to the decomposition

EA((−∞, ε))H⊕ EA([−ε, ε])H⊕ EA((ε,∞))H,

one can verify that fε(A) = (I − P )fε(A)(I − P ). From this it follows that, with respect to the
decomposition (I − P )H⊕QH⊕ (P −Q)H, we have

B := fε(A) + ε(S + S∗) + ε(P −Q) '

fε(A) ε 0
ε 0 0
0 0 ε

 ,
where S acts as the matrix unit E21. Since

B =

[
fε(A) ε
ε 0

]
⊕ ε

and the matrix on the left has inverse given by[
0 ε−1

ε−1 −ε2fε(A)

]
,

it is clear that B is invertible and self-adjoint. Moreover,

‖B −A‖ ≤ ‖fε(A)−A‖︸ ︷︷ ︸
≤ε

+ε ‖S + S∗ + (P −Q)‖︸ ︷︷ ︸
=1

≤ 2ε

and we conclude that the invertible, self-adjoint elements of A form a dense subset of the self-adjoint
elements in A. That is, A has real rank zero.

�

The real rank zero property has several other equivalent formulations that are outlined in the
following theorem. Since our interest is not in C∗-algebras of real rank zero themselves, but rather
in simple, purely infinite C∗-algebras as a particular example, we refer the reader to a proof of this
result in [9, Theorem V.7.3].

Theorem 3.3.3. Let A be a C∗-algebra. Then the following are equivalent:

(1) A has real rank zero.

(2) The elements of Asa with finite spectrum are dense in Asa.

(3) Every hereditary C∗-subalgebra of A has an approximate unit consisting of projections.

If A is a C∗-algebra of real rank zero, then the (aptly-named) hereditary C∗-subalgebras of A
also inherit this property. This is illustrated in the following corollary:

Corollary 3.3.4. If A is a C∗-algebra of real rank zero and B is a hereditary subalgebra of A, then
B has real rank zero.
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Proof. Let C be a hereditary C∗-subalgebra of B, and note that the arguments from the proof
of Proposition 3.2.5 imply that C must also be a hereditary C∗-subalgebra of A, as seen in the
proof of Proposition 3.2.5. Since A has real rank zero, Theorem 3.3.3 demonstrates that C has an
approximate unit consisting of projections. Since this must be true of all hereditary C∗-subalgebras
of B, we deduce that B must have real rank zero by Theorem 3.3.3.

�

The usefulness of real rank zero C∗-algebras in understanding the closure of nilpotent operators
can be seen in the following proposition, which states that the collection of R-linear combinations
of projections forms a dense subset within the set of self-adjoint elements.

Corollary 3.3.5. Let A be a C∗-algebra of real rank zero and A ∈ Asa. For ε > 0, there exist
pairwise orthogonal projections P1, . . . , Pn ∈ A, and scalars α1, . . . , αn ∈ R such that

‖α1P1 + · · ·+ αnPn −A‖ < ε.

Moreover, if A were in fact a positive element of A, then the scalars α1, . . . , αn may be chosen to
be positive.

Proof. By Theorem 3.3.3, there is a exists an element S ∈ Asa with finite spectrum and such that
‖A− S‖ ≤ ε. Let α1, . . . , αn denote the distinct elements of σ(S) ⊆ R, and for each i ∈ {1, . . . , n},
define Pi to be the spectral projection of S corresponding to {αi}. It follows that

S =
n∑
i=1

αiPi,

and hence we obtain the required approximation.
If instead A were in A+, the same arguments as in the previous case give rise to an element

S = α1P1 + · · ·+αnPn, where σ(S) = {α1, . . . , αn}, Pi is the spectral projection of S corresponding
to {αi}, and ‖A−S‖ ≤ ε/2. Further, the upper semicontinuity of the spectrum implies that S can
be chosen so that

dist(αi, σ(A)) ≤ ε/2

for all i ∈ {1, . . . , n}. By perturbing the elements α1, . . . , αn to be contained in σ(A) ⊆ (0,∞), we
arrive at an operator S′ = α′1P

′
1 + · · ·+ α′mP

′
m where each α′i is positive, σ(S′) = {α′1, . . . , α′m}, P ′i

is the spectral projection of S′ corresponding to {α′i}, and

‖S′ −A‖ ≤ ‖S′ − S‖+ ‖S −A‖ ≤ ε/2 + ε/2 = ε.

Thus, the proof is complete.
�

As we shall see in Section 4, Corollary 3.3.5 together with the embedding results of Section 3.2
may be used to show that in a unital, simple, purely infinite C∗-algebra, any positive element with
connected spectrum containing 0 is a norm limit of nilpotents. This result can then be extended
to normal elements in such a C∗-algebra, thereby demonstrating an analogue of Theorem 2.2.1.
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4 Normal Limits of Nilpotents in Purely Infinite C∗-Algebras

In Section 2, we presented a characterization of the closure of nilpotent operators in the Calkin
algebra, Q(H) (in the case of a separable, infinite-dimensional Hilbert space, H), which was seen
in Corollary 3.2.12 to be an example of a unital, simple, purely infinite C∗-algebra. One may now
ask whether other unital, simple, purely infinite C∗-algebras enjoy similar characterizations. As it
turns out, simple necessary and sufficient conditions for a normal operator to lie within the closure
of nilpotents in such an algebra do indeed exist. This characterization is due to P. Skoufranis [22]
and is presented in Theorem 4.1.6, followed by an analysis of important consequences.

We begin by proving the following lemma which plays a key role in the proofs of Proposition
4.1.2 and Theorem 4.1.6, the main results of this section.

Lemma 4.1.1. For each n ∈ N, there exists a positive matrix An ∈Mn(C) of unit norm such that
limn→∞dist(An,Nil(Mn(C))) = 0.

Proof. Recall from Lemma 2.2.2 that for each m ≥ 2 there exists a norm 1, nilpotent matrix
M ∈M(2m+1)m+1(C) and a normal matrix N ∈M(2m+1)m+1(C) such that ‖M −N‖ ≤ π/m+ 1/m
and

σ(N) =

{
k

m
e
iπ
m
j : j ∈ {1, . . . , 2m}, k ∈ {0, . . . ,m}

}
.

Let f be an analytic bijection from D onto

[0, 1]1/2m := {z ∈ C : dist(z, [0, 1]) < 1/2m}

such that f(0) = 0. By approximating f uniformly by polynomials, we may obtain a polynomial,
p, such that p(0) = 0 and p(D) ⊆ [0, 1]1/m. Suppose that p(z) = a1z + · · · + atz

t for some t ∈ N
and scalars a1, . . . , at. Then p(N) is normal, p(M) is nilpotent, and σ(p(N)) ⊆ [0, 1]1/m. Let Um
be a unitary matrix in M(2m+1)m+1(C) that diagonalizes p(N), so that

Ump(N)U∗m =

d1

. . .

d(2m+1)m+1

 =: D.

Define the matrix Rm ∈M(2m+1)m+1(C) by

Rm :=

Re(d1)
. . .

Re(d(2m+1)m+1)

 ,
and note that for each i ∈ {1, . . . , (2m + 1)m + 1}, we have |di − Re(di)| < 1/m, by construction.
Notice also that by applying small perturbations to σ(Rm), we may assume that U∗mRmUm is a
positive, norm 1 element of M(2m+1)m+1(C), and

‖p(N)− U∗mRmUm‖ = ‖Ump(N)U∗m −Rm‖ = ‖D −Rm‖ <
1

m
.

Since ‖N‖, ‖M‖ ≤ 1, it follows that ‖N ` −M `‖ ≤ `‖N −M‖ for all ` ∈ N. Thus,

‖p(N)− p(M)‖ ≤ |a1|‖N −M‖+ |a2|‖N2 −M2‖+ · · · |at|‖N t −M t‖
≤ (|a1|+ 2|a2|+ · · ·+ t|at|)‖N −M)‖
= c‖N −M‖
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where c := |a1|+ 2|a2|+ · · ·+ t|at|. Combining the above observations, it is evident that

dist(U∗mRmUm,Nil(M(2m+1)m+1(C))) ≤ ‖U∗mRmUm − p(M)‖
≤ ‖U∗mRmUm − p(N)‖+ ‖p(N)− p(M)‖

<
1

m
+ c

(
π

m
+

1

m

)
,

and hence this distance tends to 0 as m becomes large. With this in mind, we define the sequence
{An}n≥1 as follows: For each n ∈ N, let mn denote the largest integer such that 2(mn+1)mn+1 ≤ n.
By setting α := n− [(2mn + 1)mn + 1], we may define

An := U∗mnRmnUmn ⊕ 0α×α ∈Mn(C)

and arrive at a sequence with the desired properties.
�

The following proposition due to Skoufranis [22] completely characterizes when a positive ele-
ment in a unital, simple, purely infinite C∗-algebra belongs to the closure of nilpotents. Although
this result is not necessary to prove Theorem 4.1.6, it does help to expose many of the technicalities
that arise in its proof.

Proposition 4.1.2. Let A be a unital, simple, purely infinite C∗-algebra, and let A ∈ A+. Then
the following are equivalent:

(1) A ∈ Nil(A).

(2) A ∈ QNil(A).

(3) σ(A) is connected and contains 0.

Proof. It is obvious that (1) implies (2), and that (2) implies (3) follows from Newburgh’s version of
the upper semicontinuity of the spectrum. Let us suppose that (3) holds, so σ(A) is connected and
contains 0. Let ε > 0. We note that since A is unital, simple, and purely infinite, A has real rank
zero, and so appealing to Corollary 3.3.5 allows us to find scalars 0 = an < an−1 < · · · < a1 = ‖A‖
and non-zero, pairwise orthogonal projections P

(1)
1 , . . . , P

(1)
n , such that ‖A−A1‖ ≤ ε, where

A1 :=
n∑
i=1

aiP
(1)
i .

Notice that σ(A1) = {a1, . . . , an}, so by the assumption that σ(A) is connected, together with
Lemma 2.2.4 and upper semicontinuity of the spectrum, we may assume that

max
1≤k≤n−1

|ak+1 − ak| < ε. (∗)

Turning to Lemma 4.1.1, we can find ` ∈ N, a positive matrix T1 ∈ M`(C) with ‖T1‖ = ‖A‖,
and a nilpotent matrix M1 ∈ M`(C) such that ‖T1 −M1‖ < ε. Further, a small perturbation to
the eigenvalues of T1 allows us to assume that a1 has multiplicity 1. For each k ∈ {2, . . . , n}, let{
λ1,k, . . . , λm(1)

k ,k

}
denote the (possibly empty) portion of σ(T1) that is contained in the interval

[ak, ak−1), counting multiplicity. For each k ∈ {2, . . . , n}, Theorem 3.2.8 guarantees the existence
of pairwise orthogonal projections

Q
(1)
1,k, . . . , Q

(1)

m
(1)
k ,k
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whose sum is a proper subprojection of P
(1)
k and such that Q

(1)
j,k is Murray–von Neumann equivalent

to P
(1)
1 for every j ∈ {1, . . . ,m(1)

k }. For each k ∈ {2, . . . , n}, define

P
(2)
k := P

(1)
k −

m
(1)
k∑

j=1

Q
(1)
j,k ,

and note that P
(2)
k is a non-trivial projection for each choice of k. Further, define

A′1 := a1P
(1)
1 +

n∑
k=1

m
(1)
k∑

j=1

akQ
(1)
j,k and A2 :=

n∑
k=2

akP
(2)
k .

One can easily verify that

• A′1, A2 ∈ Asa and A1 = A′1 +A2,

• σ(A2) = {a2, . . . , an}, and

• if we define P (2) :=
n∑
k=2

P
(2)
k , then P (2) is a non-trivial projection such that

A′1 = (I − P (2))A1(I − P (2)) , and A2 = P (2)A1P
(2).

Our goal is now to approximate A′1 within 2ε of a nilpotent inside the corner (I−P (2))A(I−P (2)).
To do this, define

A′′1 := a1P
(1)
1 +

n∑
k=1

m
(1)
k∑

j=1

λj,kQ
(1)
j,k ∈ (I − P (2))A(I − P (2)),

and note that (∗) can be used to infer that ‖A′′1 −A′1‖ ≤ ε. By construction, the collection{
P

(1)
1

}
∪
{
Q

(1)
1,k, . . . , Q

(1)

m
(1)
k ,k

: k = 2, . . . , n

}
defines a set of pairwise orthogonal equivalent projections in (I − P (2))A(I − P (2)), and hence we
may use the partial isometries implementing these equivalences to build a matrix algebra whose
orthogonal minimal projections are precisely the projections described above. Moreover, A′′1 is a
diagonal operator in this algebra with spectrum identical to that of T1. Hence we may approximate
A′′1 with the (still nilpotent) analogue of M1 in (I−P (2))A(I−P (2)). Since ‖A′′1−A′1‖ ≤ ε, it follows
that A′1 can be approximated within 2ε of a nilpotent in (I − P (2))A(I − P (2)), as advertised.

As A2 is of the same form as A1 but with the largest eigenvalue removed, we simply repeat
the above analysis in the unital, simple, purely infinite corner P (2)AP (2) to obtain a similar de-
composition for A2. By invoking this technique a finite number of times, we may express A1 as a
finite direct sum of operators, each within 2ε of a nilpotent. The direct sum of these nilpotents
defines a nilpotent operator M ∈ A, and since ‖A1−A‖ ≤ ε, it follows that ‖A−M‖ ≤ 3ε, thereby
completing the proof.

�
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In order to extend this characterization to all normal elements of a unital, simple, purely
infinite C∗-algebra, we will require a well-known result due to Lin [13] that provides a simple
characterization of when a given normal operator can be approximated by normals with finite
spectra. We use the notation GL(A)0 to denote the connected component of GL(A) that contains
the identity.

Theorem 4.1.3 (Lin). Let A be a unital, simple, purely infinite C∗-algebra, and let N ∈ Nor(A).
Then N can be approximated by normals elements with finite spectra if and only if N−λI ∈ GL(A)0

for all λ ∈ C \ σ(N).

Lemma 4.1.4. Let A be a unital C∗-algebra and T ∈ QNil(A). Then T − λI ∈ GL(A)0 for all
λ ∈ C \ σ(T ).

Proof. Let M ∈ QNil(A). Then σ(tM) = t ·σ(M) = {0} for all t ∈ C, and hence tM −λI ∈ GL(A)
for all t, λ ∈ C with λ 6= 0. It then follows that M −λI can be connected to I by a continuous path
in GL(A) whenever λ 6= 0, and hence M − λI ∈ GL(A)0 for all λ ∈ C \ {0}.

Now suppose that T ∈ QNil(A) and let λ ∈ C \ σ(T ). Let {Mn}n≥1 be a sequence in QNil(A)
converging to T , and note that clearly

T − λI = lim
n→∞

(Mn − λI).

The semicontinuity of the spectrum implies that 0 ∈ σ(T ), and hence λ 6= 0. By the above analysis,
Mn − λI ∈ GL(A)0 for all n ∈ N, and since GL(A)0 is open, we conclude that T − λI ∈ GL(A)0 as
well.

�

As we will soon see, the proof of Theorem 4.1.6 relies on the connectedness of a certain graph
that arises from the spectrum of a given normal operator, which will follow from simple graph
theoretic arguments. Since this result sees repeated application in the sections to come, we present
it here for completeness.

Lemma 4.1.5. If G is a connected graph with n ≥ 2 vertices, then the set of vertices of G whose
removal keeps G connected has cardinality at least 2.

Proof. Let us call a vertex good for G if it’s removal does not disconnect G, and bad otherwise.
Our goal is to show that G has at least 2 good vertices, which we shall achieve by an inductive
argument on the number of vertices, n. The case for n = 2 is obvious and the case n = 3 is shown
below. Here we see the only two connected graphs on n = 3 vertices, where the black vertices
indicate those that are good for the given graph.

Figure 4: n = 3

Now suppose that every connected graph with at least two and at most n vertices possesses at
least two good vertices. Let G be a connected graph with n+ 1 vertices. If every vertex is good for
G, then we are done. Otherwise, let v denote a bad vertex for G, and for simplicity, assume that
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the removal of vertex v disconnects G into two connected components, G1 and G2. We will show
that both of these subgraphs contain vertices that are good for G.

If G1 has only one vertex, then clearly this vertex is good for G. If G1 has at least two vertices,
then the inductive assumption implies that there exist vertices a, b in G1 that are good for G1. To
arrive at a contradiction, suppose that both a and b are bad for G. Since neither of these vertices
can connect to G2 and both are good for G1, it must be the case that a and b were connected to
v. Notice that if we had removed a from G, then b would connect to every vertex in G2 via v, and
also to everything that remains in G1, as b was good for G1. Hence, removing a from G yields a
connected graph. This is a contradiction, and hence either a or b must be a good vertex for G. A
symmetric argument will also allow us to obtain a good vertex from G2, and hence G contains at
least 2 good vertices. The result now follows by induction.

�

Theorem 4.1.6 (Skoufranis). Let A be a unital, simple, purely infinite C∗-algebra and let N be a
normal element of A. The following are equivalent:

(1) N ∈ Nil(A).

(2) N ∈ QNil(A).

(3) σ(N) is connected, 0 ∈ σ(N), and N − λI ∈ GL(A)0 for all λ ∈ C \ σ(N).

Proof. It is clear that (1) implies (2), and (2) implies (3) follows from the semicontinuity of the
spectrum together with Lemma 4.1.4. Suppose that the assumptions in (3) hold. Given ε > 0,
Theorem 4.1.3 produces a normal operator Nε with finite spectrum such that ‖N −Nε‖ ≤ ε.

For each pair (n,m) ∈ Z2, let

Bn,m :=
(
εn− ε

2
, εn+

ε

2

]
+ i
(
εm− ε

2
, εm+

ε

2

]
.

We shall call a box Bn,m relevant if σ(Nε) ∩ Bn,m 6= ∅. Define f : C → C to be the function
that sends an element λ ∈ C to the center of the box that contains λ. Since the spectrum of Nε

is discrete, we have that f is continuous on σ(Nε) and hence f(Nε) defines an element of Nor(A)
whose spectrum is precisely the centers of the relevant boxes. Moreover,

‖N − f(Nε)‖ ≤ ‖N −Nε‖+ ‖Nε − f(Nε)‖ ≤ 2ε,

so by replacing Nε by f(Nε), we may assume that σ(Nε) is exactly the centers of the relevant boxes
and ‖N−Nε‖ ≤ 2ε. Notice that since σ(N) was assumed to be connected, the upper semicontinuity
of the spectrum coupled with Lemma 2.2.4 allows us to assume that the union of relevant boxes is
connected and that B0,0 is relevant. In the language of Lemma 4.1.5, we call a relevant box bad if
it is B0,0 or its removal disconnects the union of relevant boxes, and good otherwise.

If B0,0 is the only relevant box, then Nε = 0 which is clearly nilpotent, and the proof is
complete. Otherwise let Bn0,m0 be a good, relevant box (which exists by Lemma 4.1.5). Since
the union of relevant boxes is connected, we can find a continuous function, γ, from [0, 1] into the
union of relevant boxes such that γ(0) = 0 and γ(1) = εn0 + iεm0. The Stone-Weierstrass theorem
guarantees that γ can be approximated uniformly on [0, 1] by a polynomial that vanishes at 0. Let
p be such a polynomial and assume that

sup
t∈[0,1]

|p(t)− γ(t)| ≤ ε.
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Given δ > 0, an application of Lemma 4.1.1 yields a positive intger `, a positive matrix N` of
unit norm in M`(C), and a nilpotent matrix M` in M`(C) such that ‖N` −M`‖ ≤ δ. By replacing
N` and M` by their respective images under p and by selecting an appropriately small value of δ,
we may assume that σ(N`) is contained in an ε-neighbourhood of the union of relevant boxes, and
‖N` −M`‖ ≤ ε. We now perform small perturbations to the eigenvalues of N` so that

• σ(N`) ⊆ σ(Nε), and

• the algebraic multiplicity of εn0 + iεm0 is exactly 1.

Since each of these perturbations can be carried out at a cost of at most 2ε, it is reasonable to
assume that N` satisfies the above properties and

‖N` −M`‖ ≤ ε+ 2ε+ 2ε = 5ε.

Given a pair (n,m) ∈ Z2, let Pn,m denote the spectral projection of N` corresponding to the
box Bn,m, and let αn,m denote the algebraic multiplicity of εn + iεm for the operator N`. Note
that whenever (n,m) ∈ Z2 is such that Bn,m is relevant and not Bn0,m0 , Theorem 3.2.8 allows us
to find αn,m pairwise orthogonal subprojections of Pn,m whose sum is a proper subprojection of
Pn,m and such that each is Murray–von Neumann equivalent to Pn0,m0 . We now mimic the proof
of Proposition 4.1.2 to obtain a projection P1 ∈ A such that

• P1NεP1 can be approximated within 5ε by a nilpotent in P1AP1, and

• (I − P1)Nε(I − P1) has spectrum equal to σ(Nε) \ {εn0 + iεm0}.

By construction, the number of relevant boxes for (I − P1)Nε(I − P1) is exactly one less than for
Nε, and the union of relevant boxes is still connected. We now repeat the above analysis with
Nε replaced by (I − P1)Nε(I − P1). After a finite number of repetitions, we arrive at a nilpotent
operator M ∈ A such that ‖Nε −M‖ ≤ 5ε, and hence

‖N −M‖ ≤ ‖N −Nε‖+ ‖Nε −M‖ ≤ 2ε+ 5ε = 7ε,

completing the proof.
�

Before examining an important corollary of Theorem 4.1.6, we recall the following result due
to Herrero, a proof of which can be found in [11]:

Theorem 4.1.7 (Herrero). Let H be a complex, separable, infinite-dimensional Hilbert space, and
N be a normal operator in B(H). Then

N ∈ {M1 +M2 : M1,M2 ∈ Nil(B(H))}.

As a consequence of Theorem 4.1.6 (or Proposition 4.1.2), one can show that an analogue of
Herrero’s result holds in the setting of a unital, simple, purely infinite C∗-algebra. However, as we
will see in the following section, this result does not have a direct analogue in the case of a unital
AF C∗-algebra.

Corollary 4.1.8. Let A be a unital, simple, purely infinite C∗-algebra. Then

Asa ⊆ {M1 +M2 : M1,M2 ∈ Nil(A)}

and
A = {M1 +M2 +M3 +M4 : M1,M2,M3,M4 ∈ Nil(A)}.
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Proof. For simplicity, define N2(A) := {M1+M2 : M1,M2 ∈ Nil(A)}. Notice that since any element
of A can be decomposed into a sum of its real and imaginary parts, both of which are self-adjoint,
the second claim will follow immediately once the first claim has been proven. To see that the
first claim holds, we begin by demonstrating that the identity in any unital, simple, purely infinite
C∗-algebra must belong to N2(A). Let A ∈ A+ be such that σ(A) = [0, 1]. Since σ(A) and σ(I−A)
are connected and contain 0, Proposition 4.1.2 ensures that both A and I − A belong to Nil(A).
Hence, it follows that

I = A+ (I −A) ∈ N2(A).

Now suppose that A ∈ Asa and let ε > 0. Since A has real rank zero, we may apply Corollary
3.3.5 to obtain scalars α1, . . . , αn ∈ R, and non-zero pairwise orthogonal projections P1, . . . , Pn in
A such that ∥∥∥∥A− n∑

k=1

αkPk

∥∥∥∥ < ε. (∗)

However, each Pk is the identity in the corner PkAPk (which is simple and purely infinite by results
in Section 3), and hence for every k ∈ {1, . . . , n}, we see that Pk ∈ N2(PkAPk). Finally, by
considering the n-fold direct sum of elements from each set N2(PkAPk) that approximate Pk, it is
clear that

∑n
k=1 αkPk is contained in N2(A), and we may conclude by (∗) that A ∈ N2(A) as well.

�

Corollary 4.1.9. Let A be a unital, simple, purely infinite C∗-algebra, and let N ∈ Nor(A) be such
that N − λI ∈ GL(A)0 for all λ ∈ C \ σ(N). Then

N ∈ {M1 +M2 : M1,M2 ∈ Nil(A)}.

Proof. Since N − λI ∈ GL(A)0 for all λ ∈ C \ σ(N), an application of Theorem 4.1.3 produces
a normal operator N ′ that approximates N and has finite spectrum. Let α1, . . . , αn be the dis-
tinct elements in σ(N ′), and for each i ∈ {1, . . . , n}, let Pi denote the spectral projection of N ′

corresponding to {αi}. Then

N ′ =
n∑
i=1

αiPi,

and we may now apply the same arguments as in the proof of Corollary 4.1.8 to achieve the desired
result.

�
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5 C∗-Algebras with Tracial States

As we’ve seen in the preceding sections, there exist several theorems that allow us to characterize
many, if not all elements that make up the closure of nilpotents in certain C∗-algebras. One would
hope that these results extend to more general classes of C∗-algebras, but as we shall see in this
section (which is based on recent work of P. Skoufranis [21]), some difficulties arise when the C∗-
algebra possesses a tracial state. Section 5.1 will outline some of the obstructions that are faced in
these settings and section 5.2 will demonstrate that strong positive results can still be obtained in
the presence of a tracial state.

5.1 Obstructions by Tracial States

Definition 5.1.1. Let A be a C∗-algebra. A tracial state on A is a positive linear functional τ
such that ‖τ‖ = 1 and τ(AB) = τ(BA) for all A,B,∈ A. A tracial state τ on A is called faithful
if τ(A) > 0 whenever A is a non-zero element of A+.

Examples of C∗-algebras that possess faithful tracial states include finite-dimensional C∗-
algebras (i.e., those isomorphic to finite direct sums of matrix algebras) and UHF C∗-algebras.
A faithful tracial state is, in fact, a special case of what is called a separating family of tracial
states, defined below.

Definition 5.1.2. A C∗-algebra A is said to possess a separating family of tracial states if
for every A ∈ A+ \ {0}, there exists a tracial state τ on A such that τ(A) > 0.

In order to see why tracial states impose difficulty in approximation by nipotents, we turn to a
result known as Rota’s theorem (see [18]). The proof of this result as well as the lemma preceding
it can be also found in [15].

Lemma 5.1.3. Let X be an element of a unital C∗-algebra A with r(X) < 1. Then there exists an
element Y ∈ GL(A) such that ‖Y XY −1‖ < 1.

Proof. Note that since r(X) < 1, the series

∞∑
n=0

‖(Xn)∗Xn‖ =
∞∑
n=0

‖Xn‖2

is convergent by the root test and the Beurling spectral radius formula. Thus, Z :=
∑∞

n=0(Xn)∗Xn

defines an element of A. Moreover, since

Z − I =
∞∑
n=1

(Xn)∗Xn ≥ 0,

it follows that Z ≥ I. Thus, Y := Z1/2 ≥ I (as σ(Z) ⊆ [1,∞) implies that σ(Z1/2) ⊆ [1,∞), by the
spectral mapping theorem), and hence Y ∈ GL(A). Finally, the spectral mapping theorem may be
used to show that σ(I − Y −2) ⊆ [0, 1), from which we conclude that

‖Y XY −1‖2 = ‖Y −1X∗Y 2XY −1‖
= ‖Y −1(Z − I)Y −1‖
= ‖I − Y −2‖
= r(I − Y −2) < 1,

completing the proof.
�
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Theorem 5.1.4 (Rota’s Theorem). If A is a unital C∗-algebra and X ∈ A, then

r(X) = inf
A∈Asa

‖eAXe−A‖ = inf
Y ∈GL(A)

‖Y XY −1‖.

Proof. Choose δ > 0 such that r(Xδ−1) < 1, and apply the previous lemma to obtain an element
Y ∈ GL(A) such that ‖Y XY −1‖ < δ. If Y = U |Y | is the polar decomposition of Y , then U = Y |Y |−1

is a unitary in A. Further, since |Y | is invertible, we may choose ε > 0 such that σ(|Y |) ⊆ [ε,∞).
It then follows that A := ln(|Y |) defines an element of Asa, and since U is unitary, we see that

‖eAXe−A‖ = ‖UeAXe−AU∗‖ = ‖Y XY −1‖ < δ.

When δ approaches r(X), by considering infima in Asa and GL(A), respectively, we obtain

inf
A∈Asa

‖eAXe−A‖, inf
Y ∈GL(A)

‖Y XY −1‖ ≤ r(X).

For the reverse inequalities, note that for every A ∈ A, we have σ(X) = σ(eAXe−A), by
similarity. Hence,

r(X) = r(eAXe−A) ≤ ‖eAXe−A‖,

so the first equality holds by considering the infimum over Asa. Moreover, given Y ∈ GL(A), the
same argument shows that

r(X) = r(Y XY −1) ≤ ‖Y XY −1‖.

The result now follows as above.
�

Corollary 5.1.5. Let A be a C∗-algebra with a tracial state, τ . If M ∈ QNil(A), then τ(M) = 0.

Proof. Let ε > 0. Since τ is continuous, we may assume that M ∈ QNil(A). Further, since we can
always extend τ to a tracial state on the unitization of A by defining τ̃((A, λ)) := λ+ τ(A), we may
also assume that A is unital. Applying Rota’s theorem, we can find an element B ∈ GL(A) such
that ‖BMB−1‖ < r(M) + ε = ε, as σ(M) = {0}. But then

|τ(M)| = |τ(BMB−1)| ≤ ‖τ‖‖BMB−1‖ < ε.

This proves that τ(M) = 0, as desired.
�

Corollary 5.1.6. Let A be a C∗-algebra and let τ be a tracial state on A. Then

dist(A,QNil(A)) ≥ |τ(A)|

for every A ∈ A.

Proof. This is immediate from Corollary 5.1.5. Indeed, since τ(M) = 0, we have

dist(A,QNil(A)) = inf
M∈QNil(A)

‖A−M‖ ≥ inf
M∈QNil(A)

|τ(A−M)| = |τ(A)|.

�

As these results indicate, there are additional necessary conditions for an operator to be a norm
limit of quasinilpotents whenever the algebra in question bears the burdern of a tracial state. The
limitations these conditions impose can be seen in the results that follow.
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Proposition 5.1.7. Let A be a C∗-algebra with a separating family of tracial states, and let
N ∈ Nor(A). Suppose that there exists a polynomial p such that

(1) p(0) = 0,

(2) p(N) 6= 0, and

(3) p(σ(N)) ⊆ [0,∞).

Then N /∈ QNil(A). Consequently, Asa ∩QNil(A) = {0}.

Proof. Suppose to the contrary that there is an N ∈ Nor(A) ∩ QNil(A) and a polynomial p with
the properties listed above. Since p(0) = 0, we have that p(QNil(A)) ⊆ QNil(A), and hence
p(N) ∈ Nor(A)∩QNil(A). Further, p(N) > 0, so by assumption we can find a tracial state τ on A
such that τ(p(N)) > 0. But this clearly contradicts Corollary 5.1.5, and hence the result holds. For
the final claim, note that if N ∈ Asa\{0}, then one can see that the polynomial p(z) = z2 satisfies
the three conditions above, and hence N cannot belong to QNil(A).

�

Proposition 5.1.7 can be easily extended using Mergelyan’s theorem. The statement of this
result is given below and a proof can be found in [19, Theorem 20.5].

Theorem 5.1.8 (Mergelyan’s Theorem). Let K be a compact subset of C such that C \ K is
connected. If f is a function that is continuous on K and analytic on int(K), then f can be
approximated uniformly by polynomials on K.

Corollary 5.1.9. Let A be a C∗-algebra and N ∈ Nor(A) \ {0} be such that int(σ(N)) = ∅ and
C \ σ(N) is connected. Then

(1) N /∈ QNil(A) whenever A+ ∩QNil(A) = {0}, and

(2) N /∈ Nil(A) whenever A+ ∩Nil(A) = {0}.

As a result, if A is a C∗-algebra with a separating family of tracial states, then N /∈ QNil(A).

Proof. We shall only prove (1) as the proof of (2) is identical. Suppose that A+ ∩ QNil(A) = {0}
and N ∈ QNil(A). If we define f(z) = |z|, then f ∈ C(σ(N)), and so Mergelyan’s theorem implies
that f is a uniform limit of polynomials on σ(N). Moreover, the semicontinuity of the spectrum
guarantees that 0 ∈ σ(N), and since f(0) = 0, we may assume that the polynomials described
above all vanish at 0. Hence f(N) ∈ QNil(A), but the spectral mapping theorem also shows that
f(N) ∈ A+. By assumption f(N) = 0, and hence N = 0. Finally, if A has a separating family of
tracial states, then Asa ∩QNil(A) = {0} by Proposition 5.1.7. Since

A+ ∩QNil(A) ⊆ Asa ∩QNil(A) = {0},

the problem reduces to the first case above.
�

Since every finite-dimensional C∗-algebras sees the existence of a faithful tracial state, it becomes
interesting to ask whether the obstructions caused by these tracial states extend to direct limits of
these algebras. As it turns out, some troubles do arise. The remainder of this section will be devoted
to exploring the difficulties tracial states impose for approximation by nilpotent operators in unital
AF C∗-algebras. We begin with the following proposition which provides a useful characterization
of the closure of nilpotents in this setting.
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Proposition 5.1.10. Let A =
⋃
k≥1 Ak be an AF C∗-algebra, where each Ak is a finite-dimensional

C∗-algebra. If T ∈ A, then TFAE:

(1) T ∈ QNil(A).

(2) T ∈ Nil(A).

(3) T ∈
⋃
k≥1 Nil(Ak).

Proof. Since (3)⇒ (2) and (2)⇒ (1) are obvious, we shall only discuss the implication (1)⇒ (3).
Assume that T ∈ QNil(A). Let ε > 0 and choose M ∈ QNil(A) such that ‖T −M‖ < ε. Since
M ∈ ∪k≥1Ak, we may choose k ∈ N and M0 ∈ Ak with ‖M − M0‖ < ε. Further, the upper
semicontinuity of the spectrum allows us to assume that

σ(M0) ⊆ {z ∈ C : dist(z, σ(M)) < ε} = Bε(0),

as M ∈ QNil(A). Since Ak is finite-dimensional, there is a unitary U such that UM0U
∗ is upper-

triangular. Letting D denote the diagonal portion of UM0U
∗, and M ′0 denote the part of UM0U

∗

strictly above the diagonal, it is clear that M ′0 is nilpotent and σ(D) = σ(M0) ⊆ Bε(0), hence
‖UM0U

∗ −M ′0‖ = ‖D‖ < ε. Thus, we see that

‖T − U∗M ′0U‖ ≤ ‖T −M‖+ ‖M −M0‖+ ‖M0 − U∗M ′0U‖ < 3ε.

Since U∗M ′0U ∈ Nil(Ak), the result holds.
�

This result, together with its predecessors, can now be used to show that Theorem 4.1.7 and
Corollary 4.1.8 do not see direct analogues in the case of a unital AF C∗-algebra.

Lemma 5.1.11. Let A =
⋃
k≥1 Nil(Ak) be a unital AF C∗-algebra where each Ak is finite-dimensional.

For an element T ∈ A, each of the following sets contains at most 1 element:

(1) {λ ∈ C : λI + T ∈ Nil(A)},

(2) {λ ∈ C : λI + T ∈ span(Nil(A))}.

Proof. We present only the proof for (1), as (2) follows similarly. Suppose that λ0 ∈ C is such
that λ0I + T ∈ Nil(A), and define R := λ0I + T . In order to show that λI + T /∈ Nil(A) for all
λ ∈ C \ {0}, it suffices to show that µI + R /∈ Nil(A) for all µ 6= 0. Suppose that µ ∈ C is such
that µI + R ∈ Nil(A). For each k ∈ N, choose Rk ∈ Ak such that R = limk Rk, and note that of
course this implies that µI+R = limk(µI+Rk). Since R and µI+R belong to Nil(A), by applying
Proposition 5.1.10 we can find sequences {Mk}k≥1 and {M ′k}k≥1 such that

• R = lim
k
Mk,

• µI +R = lim
k
M ′k, and

• Mk,M
′
k ∈ Nil(Ak) for each k.

Hence limk ‖Rk−Mk‖ = limk ‖(µI+Rk)−M ′k‖ = 0. For each k ≥ 1, let τk be a normalized, faithful
tracial state on Ak. Then

|τk(Rk)| = |τk(Rk −Mk)| ≤ ‖Rk −Mk‖ → 0,
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and similarly,

|τk(µI +Rk)| = |τk((µI +Rk)−M ′k)| ≤ ‖(µI +Rk)−M ′k‖ → 0.

By these observations together with the properties of the chosen tracial states, we may now conclude
that

µ = lim
k
τk(µI +Rk) = 0,

and the proof is complete.
�

Corollary 5.1.12. Let A be a unital AF C∗-algebra. Then I /∈ span(Nil(A)).

Proof. Since 0 = 0 · I + 0 ∈ span(Nil(A)), the fact that the second set in Lemma 5.1.11 has
cardinality at most 1 implies that I = 1 · I + 0 cannot belong to span(Nil(A)).

�

5.2 Normal Limits of Nilpotents in UHF C∗-Algebras

Although UHF C∗-algebras do possess faithful tracial states and hence suffer some of the drawbacks
presented in Section 5.1, we note that positive results are still within reach. In particular, the
following theorem due to Marcoux (which was communicated to Skoufranis and can be found in
[21]) demonstrates that in any infinite-dimensional UHF C∗-algebra, there is a normal operator in
the closure of nilpotents with spectrum given by the closed unit disk. Classical results of complex
analysis and spectral theory (similar to those mentioned in Section 2) can then be used to unearth
a plethora of normal operators that belong to the closure of nilpotents in these algebras.

Theorem 5.2.1 (Marcoux). Let A be an infinite-dimensional UHF C∗-algebra. Then there exists
a normal element N in Nil(A) such that σ(N) = D.

Proof. Assume that A =
⋃
k≥1 M`k(C), where each M`k embeds unitally into M`k+1

. Since A is not
finite-dimensional, we may assume that `1 ≥ 11 and `k+1/`k is composite for all k ≥ 1. Our goal is
to define a Cauchy sequence of normal matrices (Nk)k≥1 with Nk ∈M`k for each k ≥ 1, and whose
limit is the normal element N as described in the statement of the theorem. We will define this
sequence inductively by finding, for each k ≥ 1, elements mk, nk ∈ N, and qk ∈ N ∪ {0} such that

• m1, n1 ≥ 2,

• mk+1 ≥ 2mk, nk+1 ≥ 2nk for all k ≥ 1, and

• `k = (2mk + 1)nk + 1 + qk for all k ≥ 1

We first define m1, n1, q1, and N1. Let m1 = 2 and choose n1 ≥ 2 and q1 ∈ {0, 1, 2, 3, 4} so that
`1 = (2m1 + 1)n1 + 1 + q1. Now let N1 be the direct sum of the q1× q1 zero matrix with the normal
matrix obtained from Lemma 2.2.2 by setting m = m1 and n = n1.

Now suppose we have constructed Nk for some fixed k ∈ N, as well as mk, nk, and qk so that
the above three properties are satisfied. Since `k+1/`k was assumed to be composite, we can find
p, z ≥ 2 so that `k+1/`k = pz. Hence, every eigenvalue of Nk has pz-times its multiplicity when we
view Nk as an element of M`k+1

(C). We now define mk+1 := zmk ≥ 2mk and nk+1 := pnk ≥ 2nk.
One can easily verify from the fact that `k = (2mk + 1)nk + 1 + qk, that

(2mk+1 + 1)nk+1 + 1 + ((z − 1)pnk + pz + pzqk − 1) = (pz)`k = `k+1,
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and so by defining qk+1 := (z−1)pnk+pz+pzqk−1, we see that `k+1 = (2mk+1 +1)nk+1 +1+qk+1,
as desired. Let N ′k+1 be the direct sum of the qk+1 × qk+1 zero matrix with the normal matrix
obtained from Lemma 2.2.2 by setting m = mk+1 and n = nk+1.

It is evident from the description of the spectrum from Lemma 2.2.2 that we can pair the
eigenvalues of Nk (when viewed as an element of M`k+1

(C)) with those of N ′k+1 so that for every
pair (λ, µ), we have

|λ− µ| < π

nk
+

1

mk
.

Thus, by considering the diagonalizations of Nk and N ′k+1, it follows from the above that there
exists a unitary U ∈M`k+1

(C) such that Nk+1 := UN ′k+1U
∗ satisfies

‖Nk+1 −Nk‖ <
π

nk
+

1

mk
.

Moreover, since mk+1 ≥ 2mk and nk+1 ≥ 2nk for all k ≥ 1, we see that for s ≥ k,

‖Ns+1 −Nk‖ ≤ ‖Ns+1 −Ns‖+ ‖Ns −Ns−1‖+ · · ·+ ‖Nk+1 −Nk‖

<

(
π

ns
+

1

ms

)
+

(
π

ns−1
+

1

ms−1

)
+ · · ·+

(
π

nk
+

1

mk

)
≤
(

π

2s−knk
+

1

2s−kmk

)
+

(
π

2s−k−1nk
+

1

2s−k−1mk

)
+ · · ·+

(
π

nk
+

1

mk

)
≤ 2

(
π

nk
+

1

mk

)
.

Since the final quantity tends to 0 as k tends to infinity, we conclude that the constructed sequence
(Nk)k≥1 is indeed Cauchy. Let N denote the limit of this sequence. Then clearly N is normal, and
since each Nk was obtained as the direct sum of a zero matrix and a unitary conjugate of a normal
matrix in M`k(C) within π/nk + 1/mk of a nilpotent, it follows that

dist(Nk,Nil(M`k(C)))→ 0 as k →∞,

and thus N ∈ Nil(A). Further, ‖Nk‖ ≤ 1 for all k, and consequently ‖N‖ ≤ 1 as well. Thus,
σ(N) ⊆ D, and from here it is an easy application of the upper semicontinuity of the spectrum to
see that σ(N) = D.

�

Lemma 5.2.2. Let A be a C∗-algebra and let N ∈ Nor(A) ∩Nil(A) be such that σ(N) = D. Then
f(N) ∈ Nor(A) ∩ Nil(A) whenever f : D→ C is a continuous function that is analytic on D and
vanishes at 0. Moreover, the above holds if we replace Nil(A) by QNil(A).

Proof. It is well-known that any function f that is continuous on D and analytic in D can be
approximated uniformly by polynomials on D. Further, since f vanishes at 0, we may impose the
same requirement on the aforementioned polynomials. Then f(N) ∈ Nor(A), and since Nil(A) is
invariant under these polynomials, it follows that f(N) ∈ Nil(A) as well.

�

Theorem 5.2.3. Let Ω be a non-empty, open, simply connected subset of C that contains 0, and
whose boundary is a simple, closed curve consisting of at least two points. Let A be a C∗-algebra
and suppose there is an element N ∈ Nor(A)∩Nil(A) with σ(N) = D. Then there exists an element
N0 ∈ Nor(A)∩Nil(A) with σ(N0) = Ω, and further, the above holds if we replace Nil(A) by QNil(A).
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Proof. An application of the Riemann mapping theorem yields a bijective holomorphism f : D→ Ω.
This map extends by Carathéodory’s theorem to a bijection g : D→ Ω that is continuous on D and
analytic on D. Since 0 ∈ Ω, we can find a ∈ D such that g(a) = 0. If we define

h(z) =
z + a

az + 1
,

then is is easy to see that h is a homeomorphism from D to D, and a bijective holomorphism from
D to D. If we now define F : D→ Ω by F (z) := g(h(z)), then

• F is a continuous bijection on D,

• F is holomorphic on D, and

• F (0) = g(h(0)) = g(a) = 0.

We now simply turn to Lemma 5.2.2 to deduce that N0 := F (N) ∈ Nor(A) ∩ Nil(A), and since F
is bijective, the spectral mapping theorem suggests that σ(N0) = Ω.

�
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6 Closed Unitary Orbits of Normal Operators

The problem of determining whether two normal operators are approximately unitarily equivalent
has been of interest to mathematicians for many years. Necessary and sufficient conditions have
been obtained in certain C∗-algebras, such as B(H) for a complex, separable, infinite-dimensional
Hilbert space H, as well as the Calkin algebra, Q(H). Later, Skoufranis [20] published an operator
theoretic proof of a version of a result due to Dadarlat [5, Theorem 1.7] (see Theorem 7.2.4) which
provides a characterization of this phenomenon in the case of a unital, simple, purely infinite
C∗-algebra with trivial K1 group.

The purpose of this section is to explore Skoufranis’ approach to Dadarlat’s result, culminating
in Theorem 6.3.4 (the main result of the section) will see considerable application throughout
Section 7 in order to obtain bounds on the distance between normal operator unitary orbits. We
commence with an outline of some prerequisites, including a few well-known results of K-theory.
To follow, we shall examine this result under the assumption that the normal operators in question
have the same connected spectrum, and finally, move to the general case.

6.1 Preliminaries

Although the notions of (approximate) unitary equivalence and similarity have been mentioned in
previous sections, it will be helpful to formalize these concepts before proceeding to the heart of
the section.

Definition 6.1.1. Let A be a unital C∗-algebra. We let U(A) denote the group of unitary elements
in A. Given an element A ∈ A, we define the sets

U(A) := {UAU∗ : U ∈ U(A)},

S(A) := {SAS−1 : S ∈ GL(A)},

called the unitary orbit of A and similarity orbit of A, respectively.
If B ∈ U(A) (resp. S(A)), then we say that B is unitarily equivalent to A (resp. similar

to A) and write B ∼u A (resp. B ∼ A). If B ∈ U(A) then we say that B is approximately
unitarily equivalent to A and write B ∼au A.

The following two propositions outline some simple properties of the equivalences described in
the above definition.

Proposition 6.1.2. Let A be a unital C∗-algebra, and A,B ∈ A.

(1) ∼,∼u, and ∼au are equivalence relations.

(2) If A ∈ Nor(A) and A ∼au B, then B is also normal.

(3) If A ∼ B, then σ(A) = σ(B).

(4) If B ∈ S(A), then σ(A) ⊆ σ(B) and σ(A) intersects every connected component of σ(B).

(5) If A ∼au B, then σ(A) = σ(B).

Proof. Statements (1)−(3) are straightforward to verify. For (4), the fact that σ(A) ⊆ σ(B) follows
from (3) and the upper semicontinuity of the spectrum, and the second claim is immediate from
Newburgh’s Theorem [2, Theorem 3.4.4]. Lastly, (5) may be quickly deduced from (1) and (4).

�
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Proposition 6.1.3. Let A be a unital C∗-algebra. If A,B ∈ Asa and A ∼ B, then A ∼u B.

Proof. Let Z ∈ GL(A) be such that B = ZAZ−1 and let U denote the unitary operator in the
polar decomposition of Z. We have that BZ = ZA and hence

Z∗B = (BZ)∗ = (ZA)∗ = AZ∗.

This implies that
|Z|2A = Z∗ZA = Z∗BZ = AZ∗Z = A|Z|2,

and thus A commutes with C∗(1, |Z|2) (and in particular, with |Z|−1). From this fact it is clear
that

UAU∗ = Z|Z|−1A|Z|−1Z∗

= ZA|Z|−2Z∗

= BZ|Z|−2Z∗ = B,

and we conclude that A ∼u B.
�

As a remark, we note that Putnam’s generalization of Fuglede’s theorem implies that the above
proposition also holds in the case where A and B are normal.

The remainder of this subsection serves to examine the K-theory background necessary for the
discussion to follow. Whereas the definitions of K0 and K1 in a general C∗-algebra (for which
the reader is referred to [4] or [17]) are more complicated, in the case of a unital, simple, purely
infinite C∗-algebras, the picture is significantly nicer. In fact, we can use the characterizations of
Proposition 6.1.5 to “define” K0 and K1 for our algebras. We first state the following definition for
the index function of a normal operator, as this object will be of great significance in the coming
exposition.

Definition 6.1.4. Let A be a unital C∗-algebra and N ∈ Nor(A). Since C∗(N) ∼= C(σ(N)), we
obtain a canonical injective ∗-homomorphism from C(σ(N)) into A. This in turn induces a group
homomorphism

Γ(N) : K1(C(σ(N)))→ K1(A),

called the index function of N . For each λ ∈ C \ σ(N), we write Γ(N)(λ) to denote [N − λI]1.

The following proposition describes the structure of K0 and K1 in the setting of a unital, simple,
purely infinite C∗-algebra. The proofs of statements (1) and (2) are outlined in [17, Exercise 5.7]
and [17, Exercise 8.13], respectively, while the proof of (3) appears in [13].

Proposition 6.1.5. Let A be a unital, simple, purely infinite C∗-algebra.

(1) If p, q are two non-zero projections in A, then p ∼0 q if and only if [p]0 = [q]0.

(2) If U(A)0 denotes the connected component of I in U(A), then

K1(A) ∼= U(A)/U(A)0
∼= GL(A)/GL(A)0.

(3) If N ∈ Nor(A) and λ ∈ C\σ(N), then Γ(N)(λ) describes the connected component of N −λI
in GL(A).
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As statement (3) in the above proposition indicates, the index function generalizes the notion
of index in the Calkin algebra. Moreover, this proposition suggests a reformulation of Theorem
4.1.3 in terms of index. This result can be found in [13], though is stated here for future reference.

Theorem 6.1.6 (Lin). Let A be a unital, simple, purely infinite C∗-algebra, and let N ∈ Nor(A).
Then N can be approximated by normal elements with finite spectra if and only if Γ(N) is trivial.

We conclude with the following lemma that will see application in the main result of Section 8.
Since its proof requires only the simple facts described above, we present it here.

Lemma 6.1.7. Let A be a unital C∗-algebra and N1, N2 ∈ Nor(A) with N1 ∈ S(N2).

(1) If N2 − λI ∈ GL(A)0 for some λ ∈ C \ σ(N1) then N1 − λI ∈ GL(A)0.

(2) If A is simple and purely infinite, then Γ(N1)(λ) = Γ(N2)(λ) for all λ ∈ C \ σ(N1).

Proof. (1) Let λ ∈ C \ σ(N1) be such that N2 − λI ∈ GL(A)0, and let {Vn}∞n=1 be a sequence in
GL(A) such that

lim
n→∞

‖N1 − VnN2V
−1
n ‖ = 0.

As GL(A)0 defines a normal subgroup of GL(A), we see that Vn(N2 − λI)V −1
n ∈ GL(A)0 for

all n ∈ N. Since GL(A)0 is relatively closed in GL(A) and

lim
n→∞

‖(N1 − λI)− Vn(N2 − λI)V −1
n ‖ = 0,

the result is quickly obtained.

(2) Suppose that A is simple and purely infinite. Let λ ∈ C \σ(N1) and let {Vn}∞n=1 be as above.
Note that since

lim
n→∞

‖(N1 − λI)− Vn(N2 − λI)V −1
n ‖ = 0,

it is apparent that N1 − λI and Vn(N2 − λI)V −1
n belong to the same connected component

of GL(A) for sufficiently large values of n. Proposition 6.1.5 now implies that for such values
of n, we have

Γ(N1)(λ) = [N1 − λI]1 =
[
Vn(N2 − λI)V −1

n

]
1

= [Vn]1 [N2 − λI]1
[
V −1
n

]
1

= [N2 − λI]1 = Γ(N2)(λ).

This completes the proof.
�

6.2 Normal Operators with the Same Connected Spectrum

With the tools of Section 6.1 in hand, we aim to characterize when two normal operators with the
same connected spectrum in a unital, simple, purely infinite C∗-algebra are approximate unitarily
equivalent. By considering this case separately, we showcase an important technique that appears
in its proof. This key argument will be relied on to prove a number of results in the coming sections,
and hence its importance can not be overstated.

Proposition 6.2.1. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ Nor(A)
be such that
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• σ(N1) = σ(N2),

• σ(N1) is connected, and

• Γ(N1) and Γ(N2) are trivial.

Then N1 ∼au N2.

Proof. Consider first the case that σ(N1) = σ(N2) = [0, 1]. Let ε > 0 and choose n ∈ N so that
1/n < ε. By Theorem 6.1.6, there exist elements N ′1 and N ′2 in Nor(A) with finite spectra, and such
that ‖Ni − N ′i‖ ≤ ε for each i ∈ {1, 2}. Note that by the upper semicontinuity of the spectrum,
Lemma 2.2.4, and by applying small perturbations to the elements of σ(N ′1) and σ(N ′2), we may
assume for each i ∈ {1, 2} that

σ(N ′i) =

{
j

n

}n
j=1

and ‖Ni−N ′i‖ ≤ 2ε. For each i ∈ {1, 2} and j ∈ {1, . . . , n}, let P
(i)
j denote the spectral projection of

N ′i corresponding to {j/n}, and define P
(i)
0 := I−

∑n
j=1 P

(i)
j . In this case, we obtain two collections{

P
(1)
j

}n
j=0

and
{
P

(2)
j

}n
j=0

of non-zero, pairwise orthogonal projections such that for each i ∈ {1, 2},

I =
n∑
j=0

P
(i)
j , and

∥∥∥∥Ni −
n∑
j=0

j

n
P

(i)
j

∥∥∥∥ ≤ 2ε.

As noted prior to the proposition, the following embedding argument will be used a number of
times in the coming results, and from here on we shall refer to it as the interlacing argument.

Recall from Corollary 3.2.6 that every non-zero projection in A in infinite. In particular, P
(1)
0 is

infinite, and so Corollary 3.2.10 implies that P
(1)
0 is Murray–von Neumann equivalent to a proper

subprojection of P
(2)
0 . That being said, we can write P

(2)
0 = Q

(2)
0 + R

(2)
0 where Q

(2)
0 and R

(2)
0

are non-zero orthogonal projections, and P
(1)
0 ∼0 Q

(2)
0 . Similarly, R

(2)
0 is Murray–von Neumann

equivalent to a proper subprojection of P
(1)
1 , and hence we may write P

(1)
1 = Q

(1)
1 + R

(1)
1 where

Q
(1)
1 and R

(1)
1 are non-zero orthogonal projections, and R

(2)
0 ∼0 Q

(1)
1 . By repeating this process a

finite number of times, and by defining

Q
(1)
0 := 0 , R

(1)
0 := P

(1)
0 , Q(2)

n := P (2)
n , R(2)

n := 0 ,

we obtain sets
{
Q

(1)
j , R

(1)
j

}n
j=0

and
{
Q

(2)
j , R

(2)
j

}n
j=0

of pairwise orthogonal projections such that

• P (i)
j = Q

(i)
j +R

(i)
j for all i ∈ {1, 2} and all j ∈ {0, . . . , n},

• R(2)
j ∼0 Q

(1)
j+1 for all j ∈ {0, . . . , n− 1}, and

• R(1)
j ∼0 Q

(2)
j for all j ∈ {0, . . . , n− 1}.

Using the above information together with the fact that the P
(i)
j ’s sum to I, Proposition 6.1.5

demonstrates that [
R(1)
n

]
0

= [I]0 −
n∑
j=1

[
Q

(1)
j

]
0
−
n−1∑
j=0

[
R

(1)
j

]
0

= [I]0 −
n∑
j=1

[
R

(2)
j−1

]
0
−
n−1∑
j=0

[
Q

(2)
j

]
0

=
[
Q(2)
n

]
0
.

42



Zachary J. Cramer

With this in mind, we can choose a collection {Vj}nj=0 ∪ {Wj}n−1
j=0 of partial isometries such that

V ∗j Vj = R
(1)
j and VjV

∗
j = Q

(2)
j for all j ∈ {0, . . . , n}, and W ∗jWj = Q

(1)
j+1 and WjW

∗
j = R

(2)
j for all

j ∈ {0, . . . , n− 1}. Using these partial isometries, we define a unitary operator

U :=
n∑
j=0

Vj +
n−1∑
j=0

Wj

and note that

U∗N ′2U = U∗

 n∑
j=0

j

n
P

(2)
j

U = U∗

 n∑
j=0

j

n
Q

(2)
j +

n∑
j=0

j

n
R

(2)
j

U =

n∑
j=0

j

n
R

(1)
j +

n−1∑
j=0

j

n
Q

(1)
j+1.

Hence, ‖N ′1 − U∗N ′2U‖ ≤ 1/n < ε, and it follows that

‖N1 − U∗N2U‖ ≤ ‖N1 −N ′1‖+ ‖N ′1 − U∗N ′2U‖+ ‖U∗N ′2U − U∗N2U‖ ≤ 2ε+ ε+ 2ε = 5ε.

Therefore, N1 ∼au N2.

Suppose now that N1 and N2 are elements of Nor(A) that share the same connected spectrum
and have trivial index functions. Let ε > 0, and for each pair (n,m) ∈ Z2, let Bn,m be defined as
in Theorem 4.1.6. We say a box Bn,m is relevant if σ(N1) ∩Bn,m 6= ∅ and call two boxes adjacent
if their union is connected. Since we’ve assumed that σ(N1) is connected, the union of relevant
boxes is a connected subset of C. An application of Theorem 6.1.6 yields normal operators M1

and M2, both with finite spectra, and such that ‖Ni −Mi‖ ≤ ε for each i ∈ {1, 2}. Again, by the
semicontinuity of the spectrum, Lemma 2.2.4, and by making small perturbations to σ(M1) and
σ(M2), we may assume that σ(M1) and σ(M2) are precisely the centers of the relevant boxes and
‖Ni −Mi‖ ≤ 2ε for i ∈ {1, 2}.

Let the center of each relevant box define a vertex for a graph G, where two vertices are
connected by an edge if and only if their corresponding relevant boxes are adjacent. Consider a
spanning tree τ of G, and let λ be an element of σ(M1) that corresponds to a leaf in τ . Let λ′ denote
the element of σ(M1) corresponding to the vertex in τ that is connected to the aforementioned leaf,
and note that the distance between λ and λ′ is at most

√
2ε. Identify this leaf with the spectral

projections of M1 and M2 corresponding to λ. One may now make use of the interlacing argument
from the first case: the spectral projection of M1 corresponding to λ is Murray–von Neumann
equivalent to a proper subprojection of this spectral projection of M2. Whatever remains is, in
turn, Murray–von Neumann equivalent to a proper subprojection of the spectral projection of M1

corresponding to λ′. Our leaf may now be removed from τ to obtain a small tree, and the above
analysis can be applied once again.

After a finite number of repetitions we arrive at the trivial tree, and K-theory arguments similar
to those above can be used to show that the remaining projections are Murray–von Neumann
equivalent. As before, we can use the partial isometries implementing the equivalences to construct
a unitary, U , such that ‖M1 − U∗M2U‖ ≤

√
2ε. This fact now indicates that

‖N1 − U∗N2U‖ ≤ ‖N1 −M1‖+ ‖M1 − U∗M2U‖+ ‖U∗M2U − U∗N2U‖ ≤ 2ε+
√

2ε+ 2ε < 6ε,

and thus N1 ∼au N2.
�
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6.3 Normal Operators with Equivalent Common Spectral Projections

Having determined when two normal operators with the same connected spectrum are approxi-
mately unitarily equivalent (and more importantly, having explored the interlacing argument ap-
plied in its proof), we are now nearly prepared to consider the general case. A few preliminary
lemmas will be first be established.

Lemma 6.3.1. Let A be a unital C∗-algebra and P,Q ∈ A be projections. If there exists an element
V ∈ GL(A)0 such that

‖Q− V PV −1‖ < 1

2
,

then P and Q are Murray–von Neumann equivalent.

Proof. Define P0 := V PV −1 and Z := P0Q+ (I − P0)(I −Q), and note that

‖Z − I‖ = ‖(P0Q+ (I − P0)(I −Q))− (Q− (I −Q))

≤ ‖(P0 − I)Q‖+ ‖((I − P0)− I)(I −Q)‖
= ‖(P0 −Q)Q‖+ ‖((I − P0)− (I −Q))(I −Q)‖
≤ ‖P0 −Q‖︸ ︷︷ ︸

< 1
2

+ ‖Q− P0‖︸ ︷︷ ︸
< 1

2

< 1

Hence, Z defines an element of GL(A), and so if we let Z = U |Z| be the polar decomposition of Z,
then U is unitary in A and UQU∗ = P0. To see this, note that by definition of Z, it is evident that
ZQ = P0Q = P0Z and

Z∗Z = QP0Q+ (I −Q)(I − P0)(I −Q).

Combining these results, it readily follows that QZ∗Z = QP0Q = Z∗ZQ, and hence Q commutes
with C∗(Z∗Z). In particular, Q commutes with |Z|−1 and we obtain

UQU∗ = Z|Z|−1Q|Z|−1Z∗ = ZQ|Z|−2Z∗ = P0Z|Z|−2Z∗ = P0.

Thus, Q = (U∗V )P (U∗V )−1, at which point an application of Proposition 6.1.3 shows that P ∼u Q.
From here it is straightforward to verify that P ∼0 Q.

�

The following lemma demonstrates sufficient conditions for a function to (in some sense) preserve
the elements of a closed unitary orbit or closed similarity orbit of a given operator.

Lemma 6.3.2. Let A be a unital C∗-algebra and let A,B ∈ A. Let f : C → C be a function that
is analytic on an open neighbourhood U of σ(A) ∪ σ(B).

(1) If A ∈ S(B), then f(A) ∈ S(f(B)).

(2) If A ∼au B, then f(A) ∼au f(B).

Proof. Let {Vn}∞n=1 be a sequence in GL(A) such that limn→∞ ‖A − VnBV −1
n ‖ = 0, and consider

any compact rectifiable curve γ inside U such that

• (σ(A) ∪ σ(B)) ∩ γ = ∅,

• Indγ(z) ∈ {0, 1} for all z ∈ C \ γ,
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• Indγ(z) = 1 for all z ∈ σ(A) ∪ σ(B), and

• {z ∈ C : Indγ(z) 6= 0} ⊆ U .

By the second resolvent equation and the fact that Vn(zI−B)−1V −1
n = (zI−VnBV −1

n )−1 for every
n ∈ N, it follows that

f(A)− Vnf(B)V −1
n =

1

2πi

∫
γ
f(z)

[
(zI −A)−1 − Vn(zI −B)−1V −1

n

]
dz

=
1

2πi

∫
γ
f(z)

[
(zI −A)−1 − (zI − VnBV −1

n )−1
]
dz

=
1

2πi

∫
γ
f(z)(zI −A)−1(A− VnBV −1

n )(zI − VnBV −1
n )−1dz.

We may now use this identity to obtain the estimate

‖f(A)− Vnf(B)V −1
n ‖ ≤

`(γ)‖A− VnBV −1
n ‖

2π
sup
z∈γ
|f(z)|‖(zI −A)−1‖‖(zI − VnBV −1

n )−1‖, (∗)

where `(γ) denotes the length of the curve γ. If we define T := (zI −A)−1(A− VnBV −1
n ), then by

choosing n ∈ N large enough so that ‖T‖ < 1, it follows that

(I + T )−1 = I − T + T 2 − T 3 + · · ·

is absolutely convergent, and

‖(I + T )−1‖ ≤ 1

1− ‖T‖
.

Again, we may turn to the second resolvent equation to see that

(zI − VnBV −1
n )−1 = (I + (zI −A)−1(A− VnBV −1

n ))−1(zI −A)−1,

and combining with the above calculations, it quickly follows that for n sufficiently large,

‖(zI − VnBV −1
n )−1‖ ≤ ‖(zI −A)−1‖

1− ‖A− VnBV −1
n ‖‖(zI −A)−1‖

.

Returning to the inequality given by (∗), the above implies that

‖f(A)− Vnf(B)V −1
n ‖ ≤

`(γ)‖A− VnBV −1
n ‖

2π
sup
z∈γ
|f(z)| ‖(zI −A)−1‖

1− ‖A− VnBV −1
n ‖‖(zI −A)−1‖

.

Since we are considering the supremum of a continuous function of z over a compact set γ, it is
clear that this supremum is finite, and since ‖A− VnBV −1

n ‖ tends to zero as n becomes large, we
conclude that so too does ‖f(A)− Vnf(B)V −1

n ‖. This proves that f(A) ∈ S(f(B)). Note that the
case where A ∼au B follows in a similar way upon selecting the Vn’s to be unitary.

�

If f is a function satisfying the assumptions of Lemma 6.3.2 for normal operators A and B,
and is such that f(A) and f(B) are projections in A, then one may ask if f(A) and f(B) are
Murray–von Neumann equivalent. This motivates the following definition:
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Definition 6.3.3. Let A be a unital C∗-algebra and N1, N2 ∈ Nor(A). We say that N1 and N2 have
equivalent common spectral projections if for every function f : C→ C that is analytic on an
open set U of σ(N1)∪ σ(N2) with f(U) ⊆ {0, 1}, the projections f(N1) and f(N2) are Murray–von
Neumann equivalent.

We are now in a position to tackle the main result of Section 6.

Theorem 6.3.4. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ Nor(A) be
such that

(1) σ(N1) = σ(N2),

(2) Γ(N1) and Γ(N2) are trivial, and

(3) N1 and N2 have equivalent common spectral projections.

Then N1 ∼au N2.

Proof. Let ε > 0. For each pair (n,m) ∈ Z2, define Bn,m as in Theorem 4.1.6, and call a box
Bn,m relevant if Bn,m ∩ σ(N1) 6= ∅. If we let K denote the union of the relevant boxes, then K
need not be connected but the compactness of σ(N1) implies that K has finitely many connected
components, say L1, . . . , Lk. For each i ∈ {1, . . . , k}, define fi to be the characteristic function on
Li, and notice that since N1 and N2 were assumed to have equivalent common spectral projections,
it is true that fi(N1) ∼0 fi(N2) for all i.

The assumption that the index functions for N1 and N2 are trivial allows us to invoke Theo-
rem 6.1.6 and obtain normal elements M1 and M2 in A, both with finite spectra, and such that
‖Mj −Nj‖ ≤ ε for each j ∈ {1, 2}. By the semicontinuity of the spectrum, Lemma 2.2.4, and by
making small perturbations to σ(M1) and σ(M2), we may assume for each j ∈ {1, 2} that

• σ(Mj) is precisely the centers of the relevant boxes,

• σ(Mj) ∩Bn,m 6= ∅ whenever Bn,m is relevant, and

• ‖Nj −Mj‖ ≤ 2ε.

Further, since dist(Li, L`) ≥ ε for all i, ` ∈ {1, . . . , k} with i 6= `, it follows that each fi is continuous
on K, and hence we may assume that

‖fi(Nj)− fi(Mj)‖ <
1

2

for all i ∈ {1, . . . , k} and j ∈ {1, 2}. Lemma 6.3.1 now guarantees that fi(Nj) ∼0 fi(Mj) for all i
and j, and hence

fi(M1) ∼0 fi(N1) ∼0 fi(N2) ∼0 fi(M2)

for every i ∈ {1, . . . , k}.
Our attention now turns to the interlacing argument outlined in Proposition 6.2.1. For each

i ∈ {1, . . . , k}, we can form a tree in the connected component Li and then embed the spectral
projection of M1 corresponding to a fixed leaf of this tree under the spectral projection of M2

corresponding to the same leaf. We then embed what remains of the spectral projection of M2

under the spectral projection of M1 corresponding to the vertex adjacent to the aforementioned
leaf. The leaf is then removed and the analysis is repeated on the now smaller tree. Suppose
that for a fixed value of ` ∈ {1, . . . , k}, the above process is carried out and we arrive at two

sets,
{
Q

(1)
i , R

(1)
i

}n
i=0

and
{
Q

(2)
i , R

(2)
i

}n
i=0

, of pairwise orthogonal projections with the following

properties:
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• R(1)
i ∼0 Q

(2)
i for all i ∈ {0, . . . , n− 1},

• R(2)
i ∼0 Q

(1)
i+1 for all i ∈ {0, . . . , n− 1}, and

•
n∑
i=0

R
(j)
i +

n∑
i=0

Q
(j)
i = f`(Mj) for each j ∈ {1, 2}.

By arguments analogous to those in Proposition 6.2.1, the equivalence of f`(M1) and f`(M2) to-

gether with the above observations now imply that
[
R

(1)
n

]
0

=
[
Q

(2)
n

]
0
, and hence R

(1)
n ∼0 Q

(2)
n .

Out of these equivalences comes a collection {Vi}ki=1 of partial isometries such that

V ∗i Vi = fi(M1) , ViV
∗
i = fi(M2) , and ‖M1fi(M1)− V ∗i M2fi(M2)Vi‖ ≤

√
2ε.

By defining U to be the sum of these partial isometries, we may use the fact that
∑n

i=1 fi(Mj) = I
for each j ∈ {1, 2} to deduce that U is unitary satisfying ‖M1 − U∗M2U‖ ≤

√
2ε. Consequently,

‖N1 − U∗N2U‖ ≤ ‖N1 −M1‖+ ‖M1 − U∗M2U‖+ ‖U∗M2U − U∗N2U‖ ≤ 2ε+
√

2ε+ 2ε < 6ε,

and hence N1 ∼au N2, as desired.
�

We shall state an extension of this result in case of normal operators with non-trivial index
functions in Section 7. For now, the following corollary describes a situation in which a converse
for Theorem 6.3.4 is obtained.

Corollary 6.3.5. Let A be a unital, simple, purely infinite C∗-algebra with trivial K1 group, and
let N1, N2 ∈ Nor(A). Then N1 ∼au N2 if and only if

• σ(N1) = σ(N2), and

• N1 and N2 have equivalent common spectral projections.

Proof. Suppose first that N1 ∼au N2. Then σ(N1) = σ(N2), and if f : C→ C is a function that is
analytic on σ(N1)∪ σ(N2), then Lemma 6.3.2 may be applied to show that f(N1) ∼au f(N2). It is
then evident that f(N1) ∼0 f(N2) by Lemma 6.3.1, and hence N1 and N2 have equivalent common
spectral projections.

Conversely, if N1 and N2 have identical spectra and equivalent common spectral projections,
then the fact that K1(A) is trivial ensures that N1 and N2 have trivial index functions. From here
we may apply Theorem 6.3.4 to conclude that N1 ∼au N2.

�
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7 Distance Between Unitary Orbits of Normal Operators

We now turn our attention to obtaining bounds on the distance between unitary orbits of normal
operators. This distance is somewhat well understood in the case of bounded operators acting on
a complex, infinite-dimensional Hilbert space (see [7] and [8] for example), as well as in the Calkin
algebra [6].

Our focus will be the setting of a unital, simple, purely infinite C∗-algebra. It is in this setting
that Skoufranis [20] was able to determine the distance between unitary orbits of any two normal
operators satisfying certain simple conditions. This result is given by Theorem 7.2.5. In order to
construct a proof of Skoufranis’ result, we shall first consider the case of normal operators whose
index functions are trivial. It is here that we will see much application from Section 6, as such
normal operators were of exclusive interest. The case of normal operators with possibly non-trivial
index functions will require the full power of Dadarlat’s result [5, Theorem 1.7] (see Theorem 7.2.4),
but will be used to exhibit an important characterization of normal operator similarity orbits in
Section 8.

7.1 Normal Operators with Trivial Index Function

Our analysis begins with the case of normal operators with trivial index functions. As we shall see,
this distance is intimately related to a certain notion of distance between the spectra of the given
normal operators, known as the Hausdorff distance. This is defined in the following way:

Definition 7.1.1. Let X,Y ⊆ C. The Hausdorff distance between X and Y is defined by

dH(X,Y ) := max

{
sup
x∈X

dist(x, Y ) , sup
y∈Y

dist(y,X)

}
.

We note that this defines a metric on the set of compact subsets of C.
The following proposition is an adaptation of [6, Proposition 1.2] and indicates that the Haus-

dorff distance between the spectra of two normal operators in any unital C∗-algebra is a lower
bound for the distance between their unitary orbits. We omit the proof.

Proposition 7.1.2. Let A be a unital C∗-algebra and N1, N2 ∈ Nor(A). Then

dist(U(N1),U(N2)) ≥ dH(σ(N1), σ(N2)).

As it happens, one may achieve equality in Proposition 7.1.2 by imposing certain conditions on
the normal operators in question. These conditions are outlined formally in the following lemma,
wherein they are proven sufficient by means of the interlacing argument of Proposition 6.2.1.

Lemma 7.1.3. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ Nor(A) be
such that Γ(N1) and Γ(N2) are trivial. If σ(N1) is connected, then

dist(U(N1),U(N2)) = dH(σ(N1), σ(N2)).

Proof. Of course we have that

dist(U(N1),U(N2)) ≥ dH(σ(N1), σ(N2))

by Proposition 7.1.2. To see that the reverse inequality holds, let ε > 0 and for each pair (n,m) ∈ Z2,
define the set Bn,m as in Theorem 4.1.6. For each j ∈ {1, 2}, we say that a box Bn,m is Nj-relevant
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if σ(Nj) ∩ Bn,m 6= ∅. We apply Theorem 6.1.6 to obtain normal operators M1,M2 ∈ A that
approximate N1 and N2, respectively, and such that σ(M1) and σ(M2) are finite. By familiar
arguments (see Proposition 6.2.1, for example) we may assume that σ(Mj) is exactly the centers
of the Nj-relevant boxes, and ‖Nj −Mj‖ ≤ 2ε for each j ∈ {1, 2}. Given j ∈ {1, 2} and an element

λ ∈ σ(Mj), let P
(j)
λ denote the spectral projection of Mj corresponding to λ.

We will now construct a graph from the spectra of M1 and M2, as was done in the proof of
Proposition 6.2.1. Fix λ ∈ σ(Mi) where i ∈ {1, 2}, and let j ∈ {1, 2} \ {i}. For every µ ∈ σ(Mj)
with

|λ− µ| ≤ dH(σ(N1), σ(N2)) +
√

2ε,

add an edge from µ to λ, and from µ to the center of any Ni-relevant box that is adjacent to the
one containing λ. Observe that at least one such µ always exists. To see this, note that if we select
µ so that |λ− µ| is a minimum, then

|λ− µ| = dist(λ, σ(M2)) ≤ dH(σ(M1), σ(M2)).

Further, it is easy to see from the above construction that

dH(σ(M1), σ(M2)) = max

{
sup

λ∈σ(M1)
dist(λ, σ(M2)) , sup

µ∈σ(M2)
dist(µ, σ(M1))

}

≤ max

{
sup

λ∈σ(N1)
dist(λ, σ(M2)) +

√
2

2
ε , sup

µ∈σ(N2)
dist(µ, σ(M1)) +

√
2

2
ε

}

≤ max

{
sup

λ∈σ(N1)
dist(λ, σ(N2)) +

√
2ε , sup

µ∈σ(N2)
dist(µ, σ(N1)) +

√
2ε

}
.

Since this final term is exactly dH(σ(N1), σ(N2)) +
√

2ε, it is clear that this choice of µ will give
rise to an edge.

The result of this construction is a bipartite graph G, and

|λ− µ| ≤ dH(σ(N1), σ(N2)) + 2
√

2ε

whenever λ ∈ σ(M1) and µ ∈ σ(M2) are connected by an edge in G. We claim that G is, in fact, a
connected graph. Indeed, since every vertex in G has at least one edge, it suffices to show that for
any two distinct elements λ, µ ∈ σ(M1), there exists a path in G connecting λ to µ. By assumption,
σ(N1) is connected, and hence so too is the union of the N1-relevant boxes. Thus, there is a chain

λ = λ0, λ1, . . . , λk = µ,

where λ`−1 and λ` are centers of adjacent N1-relevant boxes for each ` ∈ {1, . . . , k}. But for any
fixed such ` there exists an element µ` ∈ σ(M2) that is connected to λ`, and hence also to λ`−1

by construction. This defines a path from λ`−1 to λ`. By adjoining these paths, we obtain a path
from λ to µ, and hence G is connected.

Once again, we will mimic the interlacing argument of Proposition 6.2.1. Since G is connected,
we may apply Lemma 4.1.5 to find j ∈ {1, 2} and λ ∈ σ(Mj) such that G is still connected upon
removing λ. Let i ∈ {1, 2} \ {j} and suppose that µ ∈ σ(Mi) is a vertex in G that is connected to
λ. In this case, we must have that

|λ− µ| ≤ dH(σ(N1), σ(N2)) + 2
√

2ε.
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Since A is simple and purely infinite, the projection P
(j)
λ is Murray–von Neumann equivalent to

a proper subprojection Q
(i)
µ of P

(i)
µ . Hence, we may write P

(i)
µ = Q

(i)
µ + R

(i)
µ , remove λ from G,

and replace the projection P
(j)
λ by R

(i)
µ . This produces a smaller connected bipartite graph, and

hence the process may be repeated a finite number of times until only two vertices remain. By
construction, one of the projections corresponding to these vertices will be a non-zero subprojection
of a spectral projection of M1, and the other will be a non-zero subprojection of a spectral projection
of M2. As in the proof of Proposition 6.2.1, K-theory implies that these remaining projections must
be Murray–von Neumann equivalent.

The equivalences described above will generate a collection of partial isometries, the sum of
which defines a unitary U ∈ A that satisfies

‖M1 − U∗M2U‖ ≤ dH(σ(M1), σ(M2)) ≤ 2
√

2ε+ dH(σ(N1), σ(N2)).

Finally, the existence of such a unitary implies that

dist(U(N1),U(N2)) ≤ ‖N1 − U∗N2U‖ ≤ (4 + 2
√

2)ε+ dH(σ(N1), σ(N2)),

thereby completing the proof.
�

We will now remove the assumption that either normal operator has connected spectrum. It
turns out that a similar result is within reach if the connected components of σ(N1) and σ(N2)
can be paired in such a way that for each pair, the indicator functions for N1 and N2 on these
components are Murray–von Neumann equivalent. It is then that we may apply the previous
analysis within each pair of components and obtain following consequence. Note that the symbol
“t” will be used to indicate a disjoint union of sets.

Corollary 7.1.4. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ Nor(A) be
such that Γ(N1) and Γ(N2) are trivial. Suppose there exists n ∈ N such that for each j ∈ {1, 2}, we
have

σ(Nj) =
n⊔
i=1

K
(j)
i

where K
(j)
i is a compact, connected set for every i ∈ {1, . . . , n}. Let χ

(j)
i denote the character-

istic function of K
(j)
i for each j ∈ {1, 2} and i ∈ {1, . . . , n}. If χ

(1)
i (N1) ∼0 χ

(2)
i (N2) for all

i ∈ {1, . . . , n}, then

dist(U(N1),U(N2)) ≤ max
1≤i≤n

dH

(
K

(1)
i ,K

(2)
i

)
.

Proof. Let ε > 0. We simply apply the arguments from Lemma 7.1.3 within each pair
(
K

(1)
i ,K

(2)
i

)
,

where i ∈ {1, . . . , n}. That is, we first apply Theorem 6.1.6 to approximate N1 an N2 by normal

operators, M1 and M2, each with finite spectrum. The equivalence of χ
(1)
i (N1) and χ

(2)
i (N2) permits

the assumption that χ
(1)
i (M1) ∼0 χ

(2)
i (M2) for every i ∈ {1, . . . , n} by reasoning akin to that of

Theorem 6.3.4. This allows one to perform the same K-theoretic arguments of Lemma 7.1.3 and

obtain a collection {V1, . . . , Vn} of partial isometries satisfying V ∗i Vi = χ
(1)
i (N1), ViV

∗
i = χ

(2)
i (N2),

and
‖N1χ

(1)
i (N1)− V ∗i N2χ

(2)
i (N2)Vi‖ < ε+ dH

(
K

(1)
i ,K

(2)
i

)
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for all i ∈ {1, . . . , n}. Upon considering the sum of such partial isometries, one arrives at a unitary
U ∈ A satisfying

‖N1 − U∗N2U‖ < ε+ max
1≤i≤n

dH

(
K

(1)
i ,K

(2)
i

)
,

and hence the result follows.
�

Given the assumptions of the previous corollary, it is not surprising to learn that one may obtain
a similar bound in the case of normal operators with trivial index functions and equivalent common
spectral projections. This situation is described in the following corollary, which is generalized to an
interesting result at the end of this section, and will play a key role in proving the main theorem of
Section 8. This should be viewed as the analogue of the corresponding result for normal operators
whose spectra and essential spectra coincide, as proven by Davidson in [7].

Corollary 7.1.5. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ Nor(A) be
such that Γ(N1) and Γ(N2) are trivial. If N1 and N2 have equivalent common spectral projections,
then

dist(U(N1),U(N2)) = dH(σ(N1), σ(N2)).

Proof. Let ε > 0 and let M1 and M2 be the normal operators obtained in the proof of Lemma 7.1.3.
We may argue as in Theorem 6.3.4 and assume that for each j ∈ {1, 2}, the projections χK(Nj)
and χK(Mj) are Murray–von Neumann equivalent for every connected component K of the union
of the relevant Nj-boxes.

Let G denote the bipartite graph constructed in Lemma 7.1.3, and note that because σ(N1) is
not assumed to be connected, the graph G may not be connected. However, we will argue that
the analysis of Lemma 7.1.3 can be applied within each connected component of G to reach the
desired result. To see this, let G0 be a connected component of G, and for each j ∈ {1, 2}, let Kj

denote the union of the Nj-relevant boxes that contain vertices of G0. By defining K := K1 ∪K2,
it is easy to see that for each j ∈ {1, 2}, the distance between K and any other Nj-relevant box is
at least ε. This implies χK defines a continuous function on σ(N1) ∪ σ(N2), and since N1 and N2

were assumed to have equivalent common spectral projections, it follows that χK(N1) ∼0 χK(N2).
Combining with the remarks of the first paragraph, we obtain

χK(M1) ∼0 χK(N1) ∼0 χK(N2) ∼0 χK(M2),

allowing the K-theoretic arguments of Lemma 7.1.3 to proceed as before. Each connected compo-
nent of G therefore gives rise to a finite collection of partial isometries, and since there are only
finitely many components, we may sum these partial isometries to arrive at a unitary U satisfying

‖N1 − U∗N2U‖ ≤ (4 + 2
√

2)ε+ dH(σ(N1), σ(N2)).

The result is now immediate.
�

7.2 Normal Operators with Non-Trivial Index Function

The problem of computing the distance between unitary orbits of normal operators becomes sig-
nificantly more challenging without the assumption of trivial index functions. As an example, we
remark that this problem is not complete even in the Calkin algebra. In this section, we aim to
remedy this situation by constructing a copy of the 2∞-UHF C∗-algebra within a certain corner of
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our unital, simple, purely infinite C∗-algebra. The fact that the invertible elements in this UHF
C∗-algebra form a connected set will allow Theorem 1.7 in [5] to, in essence, reduce the problem to
the setting of Corollary 7.1.5.

Lemma 7.2.1. Let A be a unital, simple, purely infinite C∗-algebra, and let V ∈ A be a proper
isometry. If we define P := V V ∗, then there is a unital embedding of the 2∞-UHF C∗-algebra

B :=
⋃
`≥1

M2`(C)

into the corner (I − P )A(I − P ) such that [Q]0 = 0 in A for every projection Q ∈ B.

Proof. Define P0 := I − P and note that since A is purely infinite, Corollary 3.2.6 implies that
P0 is Murray–von Neumann equivalent to a proper subprojection of itself. Call this projection P1

and let P2 := P0 − P1. The isometry V implies that [P ]0 = [I]0 by Proposition 6.1.5, and hence
[P0]0 = [I − P ]0 = 0. That being said, we see that [P1]0 = [P0]0 = 0, and

[P2]0 = [P1]0 + [P2]0 = [P1 + P2]0 = [P0]0 ,

so P0 ∼0 P1 ∼0 P2 in A. If we let S ∈ A be such that SS∗ = P1 and S∗S = P2, then from the
fact that P1, P2 ∈ P0AP0, it follows that S ∈ P0AP0 as well. This shows that P1 ∼0 P2 in P0AP0,
and hence we may choose elements V1, V2 ∈ P0AP0 such that V ∗i Vi = P0 and ViV

∗
i = Pi for each

i ∈ {1, 2}.
For each ` ∈ N, define

B` := ∗ − alg
({
Vi1 · · ·Vi`V

∗
j`
· · ·V ∗j1 : ik, jk ∈ {1, 2} for all k ∈ {1, . . . , `}

})
.

Note that B` defines a C∗-subalgebra of P0AP0 that contains P0, B` ⊆ B`+1 for all ` ∈ N, and
B`
∼= M2`(C) (which can be obtained by mapping the generators of B` to the matrix units of

M2`(C) in the obvious way). From this isomorphism it is easy to see that

B :=
⋃
`∈N

B`

defines a copy of the 2∞-UHF C∗-algebra in P0AP0.
Suppose that R is a rank-1 projection in B`. Since any two rank-1 projections in B` are Murray–

von Neumann equivalent, it follows that every rank-1 projection in B` is equivalent to V `
1 (V ∗1 )` (as

this element corresponds to the matrix unit E1,1 ∈M2`(C)). But V `
1 (V ∗1 )` is Murray–von Neumann

equivalent to P0 in A by construction, and thus [R]0 = [P0]0 = 0 in A. With this in mind, given a
projection Q ∈ B, we may choose ` ∈ N and a projection Q0 ∈ B` such that

‖Q−Q0‖ < 1/2,

and by Lemma 6.3.1 we see that Q ∼0 Q0 in A. Since Q0 can be expressed as a sum of rank-1
projections in B`, the above analysis demonstrates that [Q0]0 = 0 in A and therefore [Q]0 = 0 in
A as well.

�

With the above construction complete, we now demonstrate that any compact subset of C can
be seen as the spectrum of a normal operator in this copy of the 2∞-UHF C∗-algebra.
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Lemma 7.2.2. Let X ⊆ C be a compact set, and let B denote the 2∞-UHF C∗-algebra as in
Lemma 7.2.1. Then there exists an element N ∈ Nor(B) such that σ(N) = X.

Proof. For each n ∈ N, let Xn = {xj,n}knj=1 be a 2−n-net in X and let `1 ∈ N be such that k1 ≤ 2`1 .
Then

N1 := diag(x1,1, . . . , xk1,1, xk1,1, . . . , xk1,1︸ ︷︷ ︸
2`1−k1

)

defines a normal element of M2`1 (C) with σ(N1) = X1. We now let `2 = `1(1 + k2). For every
j ∈ {1, . . . , k2}, choose ij ∈ {1, . . . , k1} such that |xj,2 − xij ,1| < 2−1 (which is possible as X1 is a
2−1-net for X) and let Nj,2 denote the matrix N1 where the first occurrence of xij ,1 is replaced by
xj,2. Now by defining

N2 := N1 ⊕N1,2 ⊕N2,2 ⊕ · · · ⊕Nk2,2,

we see that N2 is a normal element of M2`2 (C) with σ(N2) = X1∪X2, and since ‖N1−Nj,2‖ < 2−1

for all j ∈ {1 . . . , k2}, it follows that ‖N1 −N2‖ < 2−1 when we view N1 as an element of M2`2 (C)
under the standard embedding.

By repeating this construction, we arrive at a strictly increasing sequence (`n)n≥1 in N, and a
sequence (Nn)n≥1 in B such that for each n ∈ N, we have

• Nn ∈M2`n (C),

• ‖Nn −Nn+1‖ < 2−n, and

• σ(Nn) = X1 ∪ · · · ∪Xn.

In particular, the sequence (Nn)n≥1 is Cauchy. If N ∈ B denotes the limit of the sequence (Nn)n≥1,
then upper semicontinuity quickly implies that Xn ⊆ σ(N) for all n ∈ N, and thus X ⊆ σ(N). To
see that equality holds, suppose to the contrary that there exists an element λ ∈ σ(N) \X. Then
there exists an open set U containing λ and such that U ∩X = ∅. In this case, Lemma 2.2.4 ensures
the existence of a positive integer n0 such that σ(Nn)∩U 6= ∅ whenever n ≥ n0. Since σ(Nn) ⊆ X,
we obtain a contradiction and conclude that σ(N) = X.

�

Before moving to the main result of the section, we mention one final lemma. This fact can be
deduced by elementary K-theoretic arguments, and the reader is directed to [4, Lemma 1.2] for a
proof.

Lemma 7.2.3. Let A be a unital, simple, purely infinite C∗-algebra. If V ∈ A is an isometry and
U ∈ U(A), then

[U ]1 = [V UV ∗ + (I − V V ∗)]1 .

The proof of Theorem 7.2.5 will require a strong version of Theorem 6.3.4 in the case of normal
operators with equal (not necessarily trivial) index functions, which follows from the result of
Dadarlat [5, Theorem 1.7] described in Section 6. As the level of K-theory this theorem involves is
well beyond the scope of this paper, we state Dadarlat’s result below and refer the reader to [16]
for the required definitions.

Theorem 7.2.4 (Dadarlat). Let X be a compact metric space, let A be a unital, simple, purely
infinite C∗-algebra, and let ϕ,ψ : C(X) → A be two unital, injective ∗-homomorphisms. Then ϕ
and ψ are approximately unitarily equivalent if and only if [[ϕ]] = [[ψ]] in KL(C(X),A).
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One important consequence of this fact is that two normal operators in a unital, simple, purely
infinite C∗-algebra are approximately unitarily equivalent if and only if they have identical spectra,
identical index functions, and equivalent common spectral projections. This allows us to prove the
following theorem:

Theorem 7.2.5. Let A be a unital, simple, purely infinite C∗-algebra and let N,M ∈ Nor(A) be
such that

(1) σ(M) ⊆ σ(N),

(2) Γ(M)(λ) = Γ(N)(λ) for all λ ∈ C \ σ(N), and

(3) N and M have equivalent common spectral projections.

Then
dist(U(N),U(M)) = dH(σ(N), σ(M)).

Proof. By Proposition 7.1.2, we need only show that dH(σ(N1), σ(N2)) is an upper bound for the
distance between unitary orbits. Let V ∈ A be a non-unitary isometry, and define P := V V ∗. Let
B denote the copy of the 2∞-UHF C∗-algebra inside C := (I − P )A(I − P ), whose existence is
guaranteed by Lemma 7.2.1. Further, Lemma 7.2.2 ensures that B contains normal operators N0

and M0 such that σ(N0) = σ(N) and σ(M0) = σ(M). Using these operators, we define

N ′ := VMV ∗ +N0 and M ′ := VMV ∗ +M0,

and note that with respect to the decomposition PH⊕ (I − P )H,

N ′ =

[
VMV ∗ 0

0 N0

]
and M ′ =

[
VMV ∗ 0

0 M0

]
.

From this description and by our choice of N0, it is easy to see that σ(N ′) = σ(N). We shall
demonstrate that N and N ′ have equal index functions and equivalent common spectral projections.

Suppose that f is a function on C that is analytic on an open set U containing σ(N), and such
that f(U) ⊆ {0, 1}. As f may be approximated by Taylor polynomials, each of which satisfies
p(VMV ∗) = V p(M)V ∗, it follows that f(VMV ∗) = V f(M)V ∗, and hence

f(N ′) =

[
f(VMV ∗) 0

0 f(N0)

]
=

[
V f(M)V ∗ 0

0 f(N0)

]
= V f(M)V ∗ + f(N0). (∗)

From here we will consider two separate cases. If f(M) = 0, then the fact that M and N were
assumed to have equivalent common spectral projections implies that f(M) ∼0 f(N), and hence
f(N) = 0. This, in particular, demonstrates that f vanishes on σ(N) = σ(N0), and we obtain
f(N ′) = f(N0) = 0, so f(N ′) ∼0 f(N). Otherwise, f(M) 6= 0, and so f(N) 6= 0 by equation (∗).
Since Lemma 7.2.1 states that every non-zero projection in B is trivial in K0(A), it is immediate
that [f(N0)]0 = 0 in A, and we obtain[

f(N ′)
]
0

= [V f(M)V ∗]0 + [f(N0)]0 = [f(M)]0 = [f(N)]0 .

Again, we see that f(N ′) ∼0 f(N), and conclude that N ′ and N have equivalent common spectral
projections.
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As for the index function assumption of Theorem 6.3.4, first notice that as a UHF C∗-algebra, B
has the property that GL(B) is connected. It follows that N0−λI ∈ GL(B)0 for every λ ∈ C\σ(N),
and hence N ′ − λI belongs to the same connected component of GL(A) as

V (M − λI)V ∗ + (λI − P ).

However, Lemma 7.2.3 implies that V (M − λI)V ∗ + (λI − P ) belongs to the same connected
component of GL(A) as M−λI. This demonstrates that Γ(N ′)(λ) = Γ(M)(λ) for all λ ∈ C\σ(N).
Since it has been assumed that Γ(M)(λ) = Γ(N)(λ) for all such λ, we conclude that Γ(N ′) = Γ(N).

These facts in tandem with the remarks following Theorem 7.2.4 allow one to conclude that
N ′ ∼au N , and a similar argument illustrates that M ′ ∼au M . Since two operators are approx-
imately unitarily equivalent if and only if the distance between their unitary orbits is 0, we can
easily deduce from the above that

dist(U(N),U(M)) = dist(U(N ′),U(M ′)).

That being said, given any unitary U ∈ C, it is clear that P + U is unitary in A, and

dist(U(N ′),U(M ′)) ≤ ‖(P + U)N ′(P + U)−M ′‖ = ‖UN0U
∗ −M0‖. (∗∗)

Finally, we note that since N0 and M0 belong to the unital inclusion of B in C, and since Γ(N0) and
Γ(M0) are trivial when we view N0 and M0 as elements of B (as GL(B) is connected), it follows
that Γ(N0) and Γ(M0) are also trivial when N0 and M0 are viewed as elements of C. Moreover,
the fact that any two non-zero projections in B are Murray–von Neumann equivalent in A, and
hence in C, implies that the assumptions of Corollary 7.1.5 hold when we consider N0 and M0 as
elements of C. From this we see that for every ε > 0, there is a unitary U ∈ C such that

‖UN0U
∗ −M0‖ ≤ ε+ dH(σ(N0), σ(M0)).

However, since σ(N0) = σ(N), σ(M0) = σ(M), and ε > 0 was arbitrary, we may use equation (∗∗)
to conclude that

dist(U(N),U(M)) ≤ dH(σ(N), σ(M)),

thereby completing the proof.
�

It is here that we make note of an improvement to Theorem 7.2.5. As it happens, the first
hypothesis of this theorem may be removed of obtain the following stronger result:

Theorem 7.2.6. Let A be a unital, simple, purely infinite C∗-algebra, and let N1, N2 ∈ Nor(A) be
such that

(1) Γ(N1)(λ) = Γ(N2)(λ) for all λ /∈ σ(N1) ∪ σ(N2), and

(2) N1 and N2 have equivalent common spectral projections.

Then
dist(U(N1),U(N2)) = dH(σ(N1), σ(N2)).

As we only require the use of Theorem 7.2.5 in the discussion for Section 8 (and not the improved
result described above), we will refer the reader to [20] for a proof.
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8 Closed Similarity Orbits of Normal Operators

Up to this point, our study of normal operators in unital, simple, purely infinite C∗-algebras
can be decomposed into two categories: normal limits of nilpotents, and normal operator unitary
orbits. It is here that we attempt to bridge the gap between these topics by examining the closed
similarity orbits of normal operators in a unital, simple, purely infinite C∗-algebra. Since Theorem
4.1.8 characterized which normal elements in these algebras belong to the closure of nilpotents,
by determining the closed similarity orbits of these normal operators, there is potential to obtain
information on some non-normal operators within the closure of nilpotents as well.

Although the closures of these similarity orbits are not yet fully understood, Skoufranis [20] was
able to characterize which normal elements in a unital, simple, purely infinite C∗-algebra are con-
tained in the closed similarity orbit of a given normal operator. This was achieved via application
of the results established in Sections 6 and 7, including Theorem 7.2.4. This section will provide
an exposition of Skoufranis’ result.

We will explore several lemmas before reaching Skoufranis’ characterization in Theorem 8.1.5,
beginning with the following technical results on similarity in unital C∗-algebras.

Lemma 8.1.1. Let A be a unital C∗-algebra and let P ∈ A be a non-trivial projection. Suppose that
Z ∈ (I − P )A(I − P ) and X ∈ A is such that PX(I −P ) = X. If λ ∈ C is such that λ(I − P )− Z
is invertible in (I − P )A(I − P ), then

λP +X + Z ∼ λP + Z.

Proof. Since PX(I − P ) = X, we have that X is strictly upper triangular with respect to the
decomposition PH⊕(I−P )H. Let X1 ∈ A denote the upper-right block of X in this decomposition.
Define Y := X(λ(I − P )− Z)−1, and T := I + Y . Evidently,

Y =

[
0 X1

0 0

] [
0 0
0 (λI − Z)−1

]
=

[
0 X1(λI − Z)−1

0 0

]
,

and noting that Y 2 = 0 implies T−1 = I − Y . Finally, a routine verification that

T (λP +X + Z)T−1 = λP + Z

completes the proof.
�

Corollary 8.1.2. Let A be a unital C∗-algebra, let n ∈ N, and λ1, . . . , λn be distinct elements
of C. Suppose that {Pj}nj=1 is a collection of non-trivial projections in A that sum to I, and
{Ai,j}ni,j=1 ⊆ A is such that

Ai,j =

{
0, if i ≥ j
PiAi,jPj , if i < j

.

Then
n∑
j=1

λjPj +
n∑

i,j=1

Ai,j ∼
n∑
j=1

λjPj .

Proof. We shall appeal to Lemma 8.1.1 with

P := P1 , Z :=
n∑
j=2

λjPj +
n∑

i,j=2

Ai,j , and X :=
n∑
j=1

A1,j .
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Since the spectrum of Z as an element of (I − P )A(I − P ) is given by {λ2, . . . , λn}, we may define
λ := λ1 and obtain

n∑
j=1

λjPj +

n∑
i,j=1

Ai,j ∼
n∑
j=1

λjPj +

n∑
i,j=2

Ai,j = λ1P1 ⊕

 n∑
j=2

λjPj +

n∑
i,j=2

Ai,j

 .

We now repeat the above analysis in the unital C∗-algebra (I − P1)A(I − P1) to show that

n∑
j=2

λjPj +
n∑

i,j=2

Ai,j ∼
n∑
j=2

λjPj +
n∑

i,j=3

Ai,j = λ2P2 ⊕

 n∑
j=3

λjPj +
n∑

i,j=3

Ai,j

 .

The result now follows by induction.
�

Using these facts together with the construction of the 2∞-UHF C∗-algebra from Section 7, we
make our first stride in obtaining a characterization of the normal elements lying in the closure of
a normal operator similarity orbit by proving the following lemma:

Lemma 8.1.3. Let A be a unital, simple, purely infinite C∗-algebra, let M ∈ A, and let V ∈ A be a
non-unitary isometry. Further, let P := V V ∗ and B be the unital copy of the 2∞-UHF C∗-algebra
in (I−P )A(I−P ) constructed in Lemma 7.2.1. If µ is a cluster point of σ(M) and Q ∈M2`(C) ⊆ B
is a nilpotent matrix for some ` ∈ N, then VMV ∗ + µ(I − P ) +Q ∈ S(M).

Proof. Since Q ∈M2`(C) is nilpotent, and hence unitarily equivalent to a strictly upper triangular
matrix, we may assume that Q is strictly upper triangular. Let {µj}j≥1 be a sequence of distinct
elements in σ(M) converging to µ. For each n ∈ N, let

Tn := diag(µn, µn+1, . . . , µn+2`−1) ∈M2`(C)

and note that Tn → µ(I − P ) as n → ∞. Finally, if we define Mn := VMV ∗ + Tn ∈ A for each
n ∈ N, then we may verify by arguments identical to those in Theorem 7.2.5 that each Mn is
approximately unitarily equivalent to M . However, if for each i, j ∈ {1, . . . , 2`} we let Ai,j denote
the (i, j)th entry of Q, Pi denote the ith orthogonal minimal projection in M2`(C), and λi := µn+i−1,
then Corollary 8.1.2 implies that

Mn ∼ VMV ∗ + (Tn +Q)

for every n ∈ N. Combining these observations, we see that M ∼ VMV ∗ + (Tn +Q) for every
n ∈ N, and since Tn +Q→ µ(I − P ) +Q, we may conclude that VMV ∗ + µ(I − P ) +Q ∈ S(M).

�

With Lemma 8.1.3 in hand, one can now deduce the following result which serves as the backbone
for the proof of Theorem 8.1.5.

Lemma 8.1.4. Let A be a unital, simple, purely infinite C∗-algebra. Let N and M be normal
elements of A, and write σ(N) = K1 t K2 where K1 and K2 are compact, and K1 is connected.
Suppose that

(1) σ(M) = K ′1 ∪K2 where K ′1 ⊆ K1,

(2) Γ(N)(λ) = Γ(M)(λ) for all λ ∈ C \ σ(N), and
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(3) N and M have equivalent common spectral projections.

Then N ∈ S(M) whenever K ′1 contains a cluster point of σ(M).

Proof. First, consider the case that K1 is a singleton. It it immediate that K ′1 = K1 and hence
σ(N) = σ(M). An application of Theorem 7.2.5 now demonstrates that

d(U(N),U(M)) = dH(σ(N), σ(M)) = 0,

and it follows that N ∼au M .
Next, suppose that K ′1 is not a singleton. Let µ ∈ K ′1 be a cluster point of σ(M) and ε > 0. Let

V ∈ A be a non-unitary isometry, define P := V V ∗, and let B denote the copy of the 2∞-UHF C∗-
algebra inside (I−P )A(I−P ) constructed in Lemma 7.2.1. Using Theorem 5.2.1, we may obtain a
normal operator T ∈ B that is a norm limit of nilpotent operators in B (and hence a norm limit of
nilpotent matrices in

⋃
`≥1 M2`(C) by Proposition 5.1.10), and such that σ(T ) = {z ∈ C : |z| ≤ ε}.

Note that if Q is any nilpotent matrix in
⋃
`≥1 M2`(C) ⊆ B, then

VMV ∗ + µ(I − P ) +Q ∈ S(M)

by Lemma 8.1.3. Consequently, the normal operator

M1 := VMV ∗ + µ(I − P ) + T

belongs to S(M), as T is a norm limit of nilpotent matrices from
⋃
`≥1 M2`(C).

We may now argue as in the proof of Theorem 7.2.5 to conclude that M1 and N have equivalent
common spectral projections, and

Γ(M1)(λ) = Γ(M)(λ) = Γ(N)(λ)

for all λ /∈ σ(M1)∪σ(N). Since σ(M1) = σ(M)∪{z ∈ C : |z−µ| ≤ ε} and µ ∈ K1, the connectedness
of K1 together with the fact that K1 is not a singleton suggests that K1 ∩ {z ∈ C : |z − µ| ≤ ε}
contains a cluster point µ′ 6= µ of σ(M1). The above arguments may now be repeated with M
replaced by M1 to obtain a normal operator M2 ∈ S(M1) ⊆ S(M) such that

σ(M2) = σ(M1) ∪ {z ∈ C : |z − µ′| ≤ ε},

Γ(M2)(λ) = Γ(N)(λ) for all λ /∈ σ(M2) ∪ σ(N), and M2 and N have equivalent common spectral
projections.

After a finite number of repetitions, we arrive at a normal operator M0 ∈ S(M) that satisfies

• σ(M0) = K ′′1 ∪K2 where K ′′1 is connected and K1 ⊆ K ′′1 ⊆ {z ∈ C : dist(z,K1) ≤ ε},

• M0 and N have equivalent common spectral projections, and

• Γ(M0)(λ) = Γ(N)(λ) for all λ /∈ σ(M0).

We now appeal to Theorem 7.2.5 to conclude that

dist(U(N),U(M0)) = dH(σ(N), σ(M0)) ≤ ε.

Therefore dist(N,S(M)) ≤ ε, and we obtain that N ∈ S(M), as claimed.
�
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Theorem 8.1.5. Let A be a unital, simple, purely infinite C∗-algebra and let N,M ∈ Nor(A).
Then N ∈ S(M) if and only if

(1) σ(M) ⊆ σ(N),

(2) σ(M) intersects every connected component of σ(N),

(3) Γ(N)(λ) = Γ(M)(λ) for all λ ∈ C \ σ(N),

(4) if λ ∈ σ(N) is not an isolated point, then the connected component of σ(N) that contains λ
also contains some non-isolated point of σ(M), and

(5) N and M have equivalent common spectral projections.

Proof. For the “only if” direction, notice that the necessity of conditions (1) and (2) is immediate
from Proposition 6.1.2, and that (3) is necessary is a result of Lemma 6.1.7. To see that (5) is
required, let f be a function that is analytic on an open set U containing σ(N) and such that
f(U) ⊆ {0, 1}. Then Lemma 6.3.2 guarantees that f(N) ∈ S(f(M)), and Lemma 6.3.1 can now be
used to argue that f(N) ∼0 f(M).

For the necessity of (4), let Kλ denote the connected component of σ(N) that contains λ. Note
first that if Kλ is not isolated in σ(N), then every open neighbourhood of Kλ must intersect a
different connected component of σ(N). Since each of these components must in turn contain a
point of σ(M) by hypothesis (2), σ(M) ∩Kλ must contain a cluster point of σ(M). This point is
clearly non-isolated in σ(M). On the other hand, suppose that Kλ is isolated in σ(N). To obtain
a contradiction, suppose that σ(M) ∩Kλ does not contain a cluster point of σ(M). Define ιKλ to
be the identity function on Kλ, and 0 on σ(N) \Kλ. We may extend ιKλ to an analytic function
on an open neighbourhood of σ(N), and hence by appealing to Lemma 6.3.2, it is immediate that

ιKλ(N) ∈ S(ιKλ(M)).

However, the fact that σ(M)∩Kλ does not contain a cluster point of σ(M) implies that σ(M)∩Kλ

is a finite set, and hence ιKλ(M) must have finite spectrum. Let p be a polynomial that vanishes
on σ(ιKλ(M)). If T ∈ S(ιKλ(M)), then of course we must have p(T ) = 0, and hence it follows
from the above analysis that p(ιKλ(N)) = 0. As Kλ is a connected subset of σ(N) that is not a
singleton, this implies that p has infinitely many roots, which gives the desired contradiction.

Suppose now that conditions (1) − (5) hold and let ε > 0. Let L1, . . . , Ln be finitely many
connected components of σ(N) so that

σ(N) ⊆
n⋃
i=1

{z ∈ C : dist(z, Li) ≤ ε}.

For each i ∈ {1, . . . , n}, let χLi denote the characteristic function on Li. By Lemma 8.1.4, it is
clear that

M1 := M − χL1(M)M + χL1(N)N

belongs to S(M). Similarly, we may deduce that

M2 := M1 − χL2(M1)M1 + χL2(N)N

belongs to S(M1) ⊆ S(M). Applying this process a finite number of times leads to a normal
operator M ′ ∈ S(M) with dH(σ(N), σ(M ′)) ≤ ε, and such that N and M ′ satisfy hypotheses
(1)− (5) of this theorem. It now follows from Theorem 7.2.5 that

dist(U(N),U(M ′)) = dH(σ(N), σ(M ′)) ≤ ε.
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This implies that dist(N,S(M)) ≤ ε, thereby completing the proof.
�

The following corollary is an immediate consequence of the above result together with Theorem
7.2.4 and its proceeding remarks.

Corollary 8.1.6. Let A be a unital, simple, purely infinite C∗-algebra and let N1, N2 ∈ Nor(A). If
N1 ∈ S(N2) and N2 ∈ S(N1), then N1 ∼au N2.

Proof. Theorem 8.1.5 can be applied to conclude that σ(N1) = σ(N2), that Γ(N1)(λ) = Γ(N2)(λ)
for all λ ∈ C \ σ(N1), and that N1 and N2 have equivalent common spectral projections. Turning
to the remarks following Theorem 7.2.4, one quickly observes that N1 ∼au N2, as desired.

�
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